
WattWiser: Power & Resource-Efficient Scheduling
for Multi-Model Multi-GPU Inference Servers

Ali Jahanshahi
University of California, Riverside

Riverside, CA, USA
ajaha004@ucr.edu

Mohammadreza Rezvani
University of California, Riverside

Riverside, CA, USA
mrezv002@ucr.edu

Daniel Wong
University of California, Riverside

Riverside, CA, USA
danwong@ucr.edu

Abstract—With the increasing integration of Machine Learning
(ML) applications into cloud services, providing high throughput
Machine Learning inference serving has become a major demand
for cloud service providers. The inference requests need to
respond with bounded latency for each request to maintain
a consistent Service-Level Objective (SLO). To ensure SLO,
inference servers are equipped with multiple GPUs to satisfy the
computational requirements. However, multi-GPU systems are
extremely power-hungry. To resolve this, it is ideal to consolidate
the load to a sub-set of GPUs, and potentially share GPUs, in
order to minimize power consumption, without violating SLO.

By consolidating GPUs and potentially sharing GPUs we can
reduce the power consumption of multi-GPU inference servers.
However, multiple inference models typically share the same
inference server, which adds significant challenges in multi-
model multi-GPU inference server environments. In this paper,
we explore the challenges that this brings in achieving power
efficiency. We introduce WATTWISER, a model management
and scheduling policy that achieves power savings in multi-
model environments where GPUs are shared. Our results show
that WATTWISER can reduce power consumption by 34% while
serving multiple models and maintaining the SLO.

Index Terms—Power efficiency, GPU, Inference Server

I. INTRODUCTION

The demand for cloud-based inference solutions has
prompted the creation of numerous APIs, frameworks, and
hardware accelerators. Notably, Google’s Cloud Inference
platform has APIs for executing inference queries on large-
scale typed time-series data, and NVIDIA’s Triton Inference
Server [1] is an open-source inference server that is optimized
for NVIDIA GPUs. Similarly, Qualcomm Cloud AI 100 infer-
ence accelerator and Intel Nervana NNP-I (Spring Hill) have
released hardware accelerators for cloud inference solutions.

While application-specific accelerators (ASICs), such as
Google’s Tensor Processing Unit (TPUs), offer lower power
consumption and higher performance for cloud inference
services, GPUs remain popular in data centers due to their
programmability and support for general-purpose computing.
The integration of more GPUs into cloud systems has led
to power-hungry multi-GPU systems that present new power
management challenges during design and deployment of data
centers running machine learning-heavy workloads.

GPUs are designed for maximum efficiency at peak uti-
lization, but this is not always the case in machine learning
inference execution which tends to under-utilize the GPU [2]–
[5]. To optimize GPU utilization, concurrent processing of

inference requests is necessary. Moreover, the request-response
nature of inference workloads varies throughout the day due
to usage pattern fluctuations, leading to another source of
potential under-utilization, which poses challenges to energy
efficiency and can be exacerbated without proper coordination
and management. [6]

To improve the efficiency of multi-GPU inference servers,
prior works have explored how to spatially partition the
GPU to improve utilization [7]. NVIDIA Multi-Instance GPU
(MIG), as a hardware-supported feature, has been used to
partition and isolate the GPU’s resources to smaller slices
to be used for inference [3]. NVIDIA Multi-Process Service
(MPS), as a software/runtime feature, also have been used
to allocate a provisioned percentage of the GPU resources to
a process [4], [5]. However, both MIG and MPS allocated
GPU resources statically which requires offline profiling of
the optimal amount of resources required by the ML net-
work [8]. More recently, fine-grain kernel-level spatial par-
titioning techniques [2] have been proposed to enable fine-
grain kernel-scoped spatial partitioning, but this still requires
off-line profiling of individual kernels. While all of these
works improved GPU utilization, they do not necessarily target
power efficiency directly nor address the unique challenges
that multi-model multi-GPU inference servers present.

GPU-NEST [9] is the most relevant work to directly in-
vestigate the power characteristics of multi-GPU inference
servers. GPU-NEST has shown different sources (CPU-GPU
communication, GPU hardware resources, and scheduling) can
impact the energy efficiency and QoS of multi-GPU inference
servers among which scheduling policy plays an important role
in the overall energy- and resource efficiency of the inference
system. However, that work was limited to only exploring
inference servers that run a single inference model at a time.

In this paper, we propose WATTWISER, a scheduler to
address the power-efficiency issues of multi-model multi-GPU
inference servers. Our contributions are as follows:
• In Sec. II, we identify challenges and opportunities for power
savings in modern multi-model multi-GPU inference servers.
• In Sec. III, we introduce WATTWISER, our model manage-
ment framework to enable power-efficient inference. WATT-
WISER dynamically determines the number of active GPUs
and how to schedule incoming requests across allocated GPUs
to minimize power during varying ML inference loads.

GPUs

Inference
Server

GPU1 GPU2 GPU3 GPU4

Scheduler

Worker1 Worker2 ...

Inference
Front-end

Management
Front-end

Model
DB

Model Manager1

Scheduler

Worker1 Worker2 ...

Model Manager2
...(a)

(b)

(c)

Fig. 1: a) High-level overview of multi-GPU inference server
design. Model manager instantiates one worker per GPU
assigned to the model. b) Model1 and Model2 workload
traces over time normalized to maximum throughput of 2
GPUs for each while sharing no GPUs on the server. c)
Combined load of Model1 and Model2 with GPU 2 shared.

• In Sec. IV, we thoroughly evaluate WATTWISER and demon-
strate the efficacy in achieving power savings under multi-
model multi-GPU inference server systems.
• We show that WATTWISER is able to reduce average power
by 34% compared to the baseline scenario.

II. BACKGROUND AND MOTIVATION

Multi-model multi-GPU inference servers. Figure 1(a)
shows the architecture of a multi-GPU inference server. For
each model that is loaded, there is a model manager that
handles the inference. Each model manager consists of a
scheduler that schedules incoming inference requests to a set
of workers. Each worker runs an inference backend (such as
pytorch, Tensorflow, etc.) and performs the inference requests
using a GPU that it is paired with. It’s possible for multiple
workers to share a single GPU, even across two model
managers (as shown in Figure 1(c)).

When a model is loaded, the inference servers allocate a
dedicated set of GPUs to each model in order to facilitate
inference requests for multiple models simultaneously. For
example, each ML model is allocated GPU 1,2 and 3,4,
respectively, in Figure 1(b) and each model is allocated GPU
1,2 and 2,3, respecitively, in Figure 1(c). The number of GPUs
assigned to each model is determined by the application’s
required maximum throughput, measured by requests per
second (RPS).
Under-utilization in multi-GPU inference servers. The
variability in inference workloads due to usage pattern fluctu-
ations can result in under-utilization of GPUs. For example,

Figure 1(b) shows two workload traces1. In this illustrative
scenario, each model is allocated 2 GPUs and the load shown
is normalized for the maximum load that 2 GPUs can support
(100% meaning 2 GPUs are fully utilized by the model).

As the total load in Figure 1(b) fluctuates, there are periods
of time where the allocated GPUs are underutilized and does
not require all 4 GPUs, but can fit into 3 GPUs if the GPUs
are shared. Figure 1(c) depicts this scenario where each model
are allocated with a shared GPU and shows how the same load
can be handled by 3 GPUs with higher utilization.

This presents an opportunity for power savings by con-
solidating model inference to a subset of GPUs. However,
there are many challenges towards consolidating models as
it would require sharing a GPU between multiple inference
models, potentially leading to interference and tail latency
violations. Therefore, consolidating model inference into a
subset of GPUs needs careful coordination.
Related Work. Most prior works on multi-model inference
servers have focused on improving the utilization of GPUs
through spatial partitioning techniques. For example, PARIS
and ELSA [3] and GPUlet [4] explored how to allocate mod-
els across multi-GPUs through spatial partitioning the GPUs
through Nvidia’s MIG and MPS, respectively. GSLICE [5]
and KRISP [2] explored how to spatially partition and share
a single GPU to maximize the number of models that can
run on a GPU using MPS and a novel kernel-scoped spatial
partitioning technique, respectively.

The most relevant work is GPU-Nest [9], which showed
the impact of inference request scheduling policy on energy-
efficiency of multi-GPU servers. It showed that the base-
line scheduling policy in Nvidia’s Triton inference server is
not energy-proportional due to uniformly scheduling requests
equally across all GPUs. It also demonstrated that consolidat-
ing GPUs may lead to power savings. However, this work does
not explore how to actively manage models and GPUs when
multiple models are handled by the inference server.
Summary. Clearly, there exists a gap in work that explores
the power efficiency of multi-model multi-GPU inference
servers. In order to improve the power efficiency of multi-
GPU inference servers, we need to both improve the utilization
of the GPUs and improve the scheduling policies that handle
multi-model GPU inference. In this work, we first show the
effect of scheduling policy on GPU utilization and power-
efficiency in multi-GPU multi-model inference servers. Then,
we propose a scheduling policy to enable consolidating GPUs
among models while maintaining SLO.

III. WATTWISER

In this section, we present WATTWISER, a power-efficient
model management framework for multi-model multi-GPU
inference servers. WATTWISER dynamically determines how
many GPUs should be active and manages the loading/un-
loading of workers. Next, WATTWISER determines how to

1Traces derived from Facebook [10]

distribute and schedule incoming requests across the avail-
able GPUs in order to minimize power consumption while
satisfying SLO targets. We will first highlight the scheduling
challenges in a multi-model multi-GPU inference server. Then
we will detail how WATTWISER’s scheduling policies enhance
power-efficiency multi-GPU inference servers.

A. Dynamic GPU allocation/deallocation

In order to save power, WATTWISER aims to enable a
minimal subset of GPUs that can support the total load of
the system for serving inference requests. In WATTWISER,
the inference server monitors the incoming RPS rate of each
model. Based on the incoming RPS rate, it determines how
many GPUs are required for that RPS rate (i.e. serving GPUs)
and turns off under-utilized GPUs initially allocated to that
model. To avoid thrashing the GPU by turning them on and
off during run-time (due to incoming RPS rate variations), we
use a hysteresis to determine when to turn a GPU on/off.

This dynamic GPU allocation/deallocation policy is formal-
ized in Algorithm 1, AllocateGPUs(). At runtime, server
monitors the current load of each model (current_rps)
at 1-second intervals. In order to detect if more GPUs
are needed for the current load (RPS) of the model, in
more_GPUs_needed(), current_rps is compared to
model max rps as the threshold. This threshold is used to
avoid SLO failure in case of a surge in the load (RPS). If
current_rps decreases to the point where the serving set
of GPUs are underutilized, in less_GPUs_needed(), we
remove a GPU from the serving set.

At a high-level, we are essentially “packing” the total work-
load into a sub-set of available GPUs. This is similar to the
packing policy proposed in GPU-NEST [9] which identified
that by packing workloads into a sub-set of available GPUs,
you can realize power savings by turning off unnecessary
GPUs. However, as we will see later, GPU-NEST can only
handle inference servers that run a single inference model. We
will now demonstrate how prior works cannot handle inference
servers that manage multiple models at the same time.

B. Scheduling policies

Once WATTWISER determines the number of GPUs that
should be utilized for the current load, the next decision
is how to schedule the incoming requests across the GPUs.
Scheduling has a large impact on power efficiency and tail
latency in multi-modal inference server environments. We will

Algorithm .1: Allocation policy
cur_rps: current RPS.
model_max_rps: model’s Max RPS a GPU can support.
allocated_gpus: GPUs initially allocated to the model.
serving_set: GPUs that serve requests

AllocateGPUs():
| if more_GPUs_needed(cur_rps, model_max_rps)
| | AddGPU(allocated_gpus, serving_set)
| else if less_GPUs_needed(cur_rps, model_max_rps)
| | RemoveGPU(serving_set)
| UpdateSharingWeights(); or
| UpdateSharingLoadWeights();

M
od

el
2

d) Sharing+Load-aware

20%

100%

100%

G
PU

1
G

PU
2

(s
ha

re
d)

G
PU

3

c) Sharing-aware

66%

73%

80%

G
PU

1
G

PU
3

b) Packed-Uniform
(GPU-NEST)

50%

60%

110%

G
PU

1
G

PU
2

(s

ha
re

d)
G

PU
3

a) Uniform
(baseline)

 50%

50%

60%

60%

G
PU

1
G

PU
2

G
PU

3
G

PU
4

M
od

el
1

G
PU

2

(s
ha

re
d)requests

requests

sc
he

du
le

r
sc

he
du

le
r

sc
he

du
le

r
sc

he
du

le
r

sc
he

du
le

r
sc

he
du

le
r

sc
he

du
le

r
sc

he
du

le
r

Fig. 2: GPUs utilization with different scheduling policies
for two models. Uniform (a,b) and Sharing-aware (c) both
schedule requests to the shared GPU regardless of the load.
Sharing+Load-aware (d) policy utilizes the maximum capacity
of non-shared GPUs before scheduling requests to the shared
GPU.

first highlight the impact of scheduling and then propose
several scheduling policies.

1) Impact of scheduling in multi-model multi-GPU infer-
ence servers : As mentioned in the previous section, work-
loads are mostly operated below their maximum load which
creates an opportunity for power saving through resource
(GPU) sharing. As an example, Figure 2(a) illustrates an
example of the uniform scheduling effect on GPU utilization
in a scenario where no GPU is shared among two models.
Each model is allocated two GPUs with the requests uniformly
scheduled across all GPUs. This is the baseline behavior of
existing inference servers, such as Nvidia’s Triton inference
server [1].

However, the dynamic load of the server allows us to fit
the load within 3 GPUs if we can share a GPU between
both models. Figure 2(b), shows a scenario where one GPU is
shared between 2 models leading to utilizing 3 GPUs in total.
This scenario shows GPU-NEST’s scheduling policy where
the schedulers in each model manager are not coordinated
and schedule requests uniformly across their allocated GPUs
without knowledge that the backend GPUs are shared. This
can lead to over-utilization of the shared GPU (i.e. GPU2)
and tail latency violations. Therefore, to satisfy tail latency
requirements, the schedulers from different model managers
should be coordinated or be made aware of backend GPUs
that are shared and the load distribution across GPUs.

2) Sharing-aware Scheduling: To support multi-model in-
ference, we propose two scheduling policies: a Sharing-aware
scheduling policy and a Sharing+Load-aware scheduling pol-
icy. Both policies take into account the GPUs that are shared
when packing multiple inference models into a subset of active
GPUs while maximizing energy efficiency.

We first present a Sharing-aware Scheduling policy where
the model manager’s schedulers are made aware of how
many models are sharing a particular GPU. In Sharing-aware
scheduling, requests are scheduled to each GPU proportional
to the number of models sharing the GPU. For example,
in Figure 2(c), each inference model is allocated to two
GPUs (allocated_GPUs = 2), with the middle GPU
(GPU2) being shared. Therefore, GPU1 has a sharing fac-
tor of 1, and GPU2 has a sharing factor of 2. Model1’s
scheduler interleaves the requests among GPU1 and GPU2

Algorithm .2: Scheduling policies
cur_rps: current RPS.
model_max_rps: model’s Max RPS a GPU can support.
sharing_factor: number of models sharing each GPU.
gpu_rps: RPS load mapped to each GPU.
weights: request distribution weights of each GPU.

UpdateSharingWeights():
| remained_rps = cur_rps
| // Calculate weights w.r.t GPU’s sharing_factor
| lcm = LCM(sharing_factor)
| for gpu in allocated_gpus
| | weight[gpu] = lcm/sharing_factor[gpu]

UpdateSharingLoadWeights():
| remained_rps = cur_rps
| // Prioritize scheduling load to non-shared GPUs
| for gpu in not_share_gpus
| | gpu_rps[gpu] = model_max_rps
| | remained_rps -= gpu_rps[gpu]
| // Schedule the remaining load to shared GPUs
| for gpu in shared_gpus
| | shared_rps = model_max_rps/sharing_factor[gpu]
| | if remained_rps < shared_rps
| | | gpu_rps[gpu] = remained_rps; break
| | else
| | | gpu_rps[gpu] = shared_rps
| | remained_rps -= gpu_rps[gpu]
| // Calculate weights for request distribution
| min_gpus_rps = min(gpu_rps)
| for gpu in serving_set
| | weight[gpu] = gpu_rps[gpu]/min_gpus_rps

with the ratio of 2:1. By interleaving requests among GPUs
based on their sharing ratio, it aims to avoid contention
on the models that share GPUs but yet maintain a load
balance between the allocated GPUs. This policy is shown
in Algorithm 2 UpdateSharingWeights. Based on the
sharing_factor, we can compute the weight assigned
to each GPU by dividing the least common multiple (LCM) of
the sharing_factor by each GPU’s sharing_factor.
During runtime, the requests are scheduled to the GPUs
using a weighted round robin scheduling where every GPU
gets weight requests (2 requests for GPU1, 1 request for
GPU2 in Figure. 2). In our inference server, the Management
front-end, upon user’s request for loading a model into a
GPU, broadcasts the sharing_factor of each GPU to all
model’s scheduler to make them aware of the sharing status
of each GPU.

In Sharing-aware scheduling, even though the contention is
reduced while GPUs are shared, it does not take the current
load of the model into account. For example, in scenarios
where the load is too low, Sharing-aware scheduling still
schedules inference batches to the shared GPUs creating
unnecessary contention as well as under-utilization of the non-
shared GPU. To avoid contention and under-utilization, we
propose a Sharing+Load-aware scheduling policy.

3) Sharing+Load-aware Scheduling: We now present
Sharing+Load-aware scheduling, which aims to minimize
contention between different inference models while improv-
ing utilization of GPUs, which is the most energy efficient
operating point. Figure 2(d) illustrate an example of how
the Sharing+Load-aware scheduler distributes the requests to

GPUs. Sharing+Load-aware prioritizes the GPUs that are not
shared and can support inference requests for the current load
without violating SLO. This maximizes the utilization of non-
shared GPUs and minimizes the contention in shared GPUs.
For example, Model1 and Model2 prioritize and maximize the
utilization of the non-shared GPU1 and GPU3, respectively.
Then only when necessary, do the requests spill over to the
shared GPU, GPU2.

In Algorithm 2, UpdateSharingLoadWeights()
shows the pseudo-code of the Sharing+Load-aware scheduling
policy. The policy first distributes model_max_rps load to
the non-shared GPUs and any remaining load is spilled over
to the shared GPUs. We then normalize the load to each
GPU (gpu_rps) to get a weight ratio for each GPU. For
example, in Figure 2.d, Model2 will have a weight of 5
and 1 for GPU3 and GPU2, respectively. During runtime, the
requests are scheduled to the GPUs using a weighted round
robin scheduling where every GPU gets weight requests (5
requests for GPU3, 1 request for GPU2, etc.).

IV. EVALUATION

A. Evaluation Methodology

Server Hardware: We deployed our inference server on
a system with 4 AMD MI50 GPU, 2 AMD EPYC 7302 16-
Core Processor, 512 GB RAM, Ubuntu 18.04 LTS with kernel
5.4.0. The system runs the AMD ROCm 5.2 runtime stack.

Workloads: We use a combination of computer vision pre-
trained models for evaluation. Table I shows the model as
well as their SLO and max throughput. For each model,
SLO is measured similarly to prior works where we set
2x the isolated inference tail latency [2]–[4]. WATTWISER’s
framework support serving any number of models on servers
with any number of GPUs. To illustrate the efficiency of
WATTWISER, we deploy 2 models on 4 GPUs (2 GPUs
allocated for each model) as the workload. Our workload
consists of two models (resnext101 and resnet152)
with high latency, one model (vgg19) with medium la-
tency, and two models (alexnet and squeeznet1)
with low latency requirements. To evaluate our approach,
we picked five combinations of workloads with differ-
ent latency requirements: resnext101-resnet152 (high-
high), resnet152-vgg19 (high-medium), resnext101-
squeezenet1 (high-low), vgg19-alexnet (medium-
low), and alexnet-squeezenet1 (low-low) pairs.

Workload traces: For workload traces, we use Facebook
SWIM traces [10] shown in Figure 1(b). Each trace is nor-

TABLE I: Inference workload used with their maximum
throughput on single GPU. SLO is 95% tail latency of the
model on one GPU.

Model Max Throughput (RPS) SLO (ms) Latency
resnext101 140 101 High
resnet152 150 76 High
vgg19 320 41 Medium
alexnet 1750 25 Low
squeezenet1 2050 28 Low

malized to [20%-95%] of our system. For each model, 100%
load has been mapped to the maximum throughput (RPS) two
GPUs can support for that model without violating the SLO.

Multi-GPU Inference server: We created our own cus-
tom inference server framework as most existing inference
servers, such as Triton Inference Server [1], are designed
for Nvidia-based GPU systems and tightly integrate Nvidia-
specific features. Our multi-GPU inference server reflects
the design of Nvidia’s Triton and is shown in Figure 1(a).
Our multi-GPU inference server consists of the following
components. Inference Front-end: a thread responsible for
accepting concurrent requests from clients, routing them to
the requested model’s Scheduler, and sending back the infer-
ence result (response). Management Front-end: a thread that
provides an API to load models from the Model Database for
serving, controlling the number of GPUs, number of workers,
and batch size for each model. Model Database: containing
all of the pre-trained models. Model Manager: there is one
model manager per model containing a Scheduler thread (for
batching and distributing requests to workers), and one or more
workers per GPU that is allocated to the model. Workers:
a concurrent thread that performs pre-processing, inference,
and post-processing on a batch of requests. Each worker is
independent of one another and uses an independent stream,
allowing for concurrent inference execution on the same or
different GPUs. Communication: all components of the server
communicate through highly scalable and efficient event-based
ZeroMQ library [11]. ML Backend: We use PyTorch 1.12 as
the worker ML backend.

Power measurement: To measure the power consumption
of the server we used AMD’s ROCm system management API
(rocm-smi). The samples of power are taken at 10ms intervals
for each experiment and are averaged for each trace point in
our evaluations.

B. Evaluation results

WattWiser in action: in WATTWISER, loading and un-
loading models into the server is performed upon user request
through Management front-end. Users are able to request
to load a model to a given GPU. Upon loading/unloading
each model to/from the GPUs, WATTWISER automatically
updates the allocated_GPUs set and sharing_factor,
and adjusts resources (GPUs) based on the selected schedul-
ing policy while serving the requests. Figure 3 illustrates
the workings of WATTWISER while two inference models
are following variable request traces. As the load fluctu-
ates, WATTWISER dynamically consolidates the total load
into a subset of active GPUs as shown in Figure 3(c).
In the figure, each bar at each time step corresponds
to the percent of requests scheduled to each GPU (labeled on
right axis). For example, in time step 1, both model’s load is
below 50% (1) which means each model only needs one GPU
to serve requests for the model (100% load means 2 GPUs are
required). Therefore, all (i.e. 100%) of the requests received
during time step 1 are scheduled to each model’s dedicated
GPUs leaving shared GPU (GPU 2) free to be turned off. In

0

50

100

150

M
od

el
s l

oa
d

(%
)

Total load (+) vgg resnet

(a) 2
1

vgg19 resnet152

50

100

150

P9
5

la
te

nc
y

(m
se

c)

vgg19 SLO

resnet152 SLO

(b)

0 5 10 15 20 25 30
Time (min)

0

0
100

0
100

100

%
 o

f r
eq

ue
st

s
sc

he
du

le
d

to
 G

PU
s

vgg dedicated GPU

shared GPU

resnet dedicated GPU

(c) 3

GPU 1

GPU 2

GPU 3

GP
U

1
GP

U
2

GP
U

3

Fig. 3: Timeline view of WATTWISER in action. WATT-
WISER is able to dynamically adapt the number of serving
GPUs allocated to each model based on their sharing status
(Sharing-aware) as well as the rate of scheduling requests to
each GPU based on load (Load-aware) (c)2 while maintaining
tail latency (b) under variable loads (a).

time step 3, resnet152 load goes above 50% (2) therefore,
some of the requests (based on policy explained in Section III)
are scheduled to the shared GPU (i.e. GPU 2, 3).

WATTWISER is able to maintain the inference model’s tail
latency (solid lines in Figure 3(b)) by staying within the SLO’s
target tail latency (dashed lines in Figure 3(b)). Overall, this
allows WATTWISER to obtain power savings by turning off the
unutilized shared GPUs (rectangles that are completely white
in Figure 3(c)) under variable load in a multi-model multi-
GPU inference server environment.

Tail latency: We first evaluate the impact of WATT-
WISER scheduling policy on tail latency. We used request
traces shown in Figure 1(b) for each of the five pairs of
inference workloads as detailed previously. For each trace, a
client was used to send requests to each pair of the models
concurrently, following the load of the traces at each step
for each model. The load specified at each step of traces
is mapped to the max throughput of 2-GPUs (i.e. 2x the
maximum throughput listed in Table I) for each model. For
example, for resnet152-vgg19 pair, we used the top and
middle trace of Figure 1(b), respectively. While sending the
requests, the client keeps track of the latency of all of the
requests, and at the end of each pair’s experiment, the 95th
percentile latency is calculated and reported.

Figure 4 shows the distribution of normalized 95th tail
latency for each model pair trace. The distribution illustrated in
Figure 4 are the tail latencies for each step/load of the trace.
We present the distribution of tail latencies rather than the
overall tail latency of the whole trace to demonstrate a more
complete overview of the behavior of different scheduling

2Each rectangle corresponds to the percent of requests scheduled to each
GPU for each model at any step. The rectangles’ height shows the percentage
of requests scheduled to each GPU and does not represent GPU utilization.

resnet152(H) resnext101(H)
10 1

100

101
No

rm
al

ize
d

95
th

 ta
il

la
te

nc
y

vgg19(M) resnet152(H)
10 1

100

101

resnext101(H)squeezenet(L)
10 1

100

101

vgg19(M) alexnet(L)
10 1

100

101

alexnet(L) squeezenet(L)
10 1

100

101

Baseline GPU-NEST Sharing-aware Sharing+Load-aware

Fig. 4: Distribution of tail latencies for different model pairs at each load step of the inference model’s traces in Figure 1.b.
Green dashed line indicates target tail latency.

resnet152(H)
resnext101(H)

vgg19(M)
resnet152(H)

resnext101(H)
squeezenet(L)

vgg19(M)
alexnet(L)

alexnet(L)
squeezenet(L)

Average

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
av

er
ag

e
po

we
r

Baseline
GPU-NEST
Sharing-aware
Sharing+Load-aware

Fig. 5: Average power of each model pair while following the
inference model’s load traces.

policies on the tail latency. The horizontal green dashed line
indicates the SLO’s target tail latency.

Across all scheduling policies, the smaller model with lower
latency’s tail latency is more sensitive and more impacted
when paired with larger models with higher latency.

Sharing+Load-aware policy across all model pairs has not
failed the SLO of the model. The elevation in maximum
normalized tail latency in Sharing+Load-aware, compared to
baseline, is expected since we are sharing one GPU between
two models while baseline has two dedicated GPUs for each
of the two co-running models. Although the maximum nor-
malized tail latency (the outliers) has been elevated compared
to the Baseline (Uniform), it achieves better tail latency when
compared to GPU-NEST (Packed-Uniform), and the Sharing-
aware policy. This is due to Sharing+Load-aware’s aim to
reduce contention in the shared GPU.

In some cases, for example, the resnet152-
resnext101 pair, Sharing-aware performs worse than
GPU-NEST. Since the Sharing-aware schedules the requests
to the non-shared and shared GPUs with a ratio of 2:1, it may
cause over-utilization of the non-shared GPU in higher loads
leading to the growth of the host-side queue and impacting
the tail latency. GPU-NEST (packed-uniform), however, in
higher loads, distributes the requests among the non-shared
and shared GPUs evenly and since the total load of the model
can be supported by two GPUs in higher loads, it performs
better. This issue does not exist in Sharing+Load-aware
policy since the requests are distributed among non-shared
and shared GPUs by adjusting the GPUs’ weight based on
the load. This demonstrates the need to be aware of both load
and which GPUs are shared.

Power savings: To investigate the impact of scheduling
policies on power consumption, we measure the GPU’s power
for each model pair while following the load traces. Figure 5
shows the average power consumption of GPUs utilized by
each model in each experiment normalized to the Baseline
Uniform case. By consolidating the total load into a subset of
active GPUs, the average power consumption of the GPUs is
reduced in all scenarios. On average, compared to baseline,
Packed-Uniform saves 24%, Sharing-aware saves 20%, and
Sharing+Load-aware saves 34% average power.

Sharing-aware scheduling policy, however, consumes more
power compared to GPU-NEST’s Packed-Uniform scheduling.
As mentioned before, this is due to the fact that Sharing-
aware policy distributes requests between non-shared and
share GPUs with a ratio of 2:1 (compared to Packed-Uniform
where the ratio is 1:1). Distributing requests with ratio of
2:1 utilizes the non-shared GPU, more leading to higher
power consumption compare to Uniform. However, note from
Figure 4 that packed uniform tends to violate SLO in almost
all scenarios, except for resnet152-resnext101. So most
of GPU-NEST’s power savings gains come at the cost of
increased SLO violations.

The Sharing+Load-aware policy achieves the best power
savings across all workload mixes. This policy packs the
requests to the non-shared GPU which increases the utilization
(and energy efficiency) of the non-shared GPU. This also
achieves the best tail latency as the amount of contention is
minimized in the shared GPU.

V. CONCLUSION

Multi-model multi-GPU inference servers experience
unique challenges in achieving energy efficiency. In this work,
we highlight the challenges and limitations of existing multi-
GPU inference server scheduling policies. We present WATT-
WISER, a framework to manage GPUs allocation and energy-
efficient scheduling policies for multi-model multi-GPU infer-
ence servers. We show that WATTWISER can save power by
34% on average while maintaining target tail latency.

ACKNOWLEDGEMENT

This work is partly supported by National Science Founda-
tion under grants CNS-1955650 and CNS-2047521. We would
also like to thank the anonymous reviewers for their invaluable
comments and suggestions.

REFERENCES

[1] Nvidia, “Triton Inference Server,” https://docs.nvidia.com/deeplearning/triton-
inference-server/user-guide/docs/index.html.

[2] M. Chow, A. Jahanshahi, and D. Wong, “KRISP: Enabling kernel-wise
right-sizing for spatial partitioned gpu inference servers,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2023.

[3] Y. Kim, Y. Choi, and M. Rhu, “PARIS and ELSA an elastic scheduling
algorithm for reconfigurable multi-gpu inference servers,” in Proceed-
ings of the 59th ACM/IEEE Design Automation Conference, 2022, pp.
607–612.

[4] S. Choi, S. Lee, Y. Kim, J. Park, Y. Kwon, and J. Huh, “Multi-model
machine learning inference serving with gpu spatial partitioning,” arXiv
preprint arXiv:2109.01611, 2021.

[5] A. Dhakal, S. G. Kulkarni, and K. Ramakrishnan, “Gslice: controlled
spatial sharing of gpus for a scalable inference platform,” in Proceedings
of the 11th ACM Symposium on Cloud Computing, 2020, pp. 492–506.

[6] J. Kosaian, A. Phanishayee, M. Philipose, D. Dey, and R. Vinayak,
“Boosting the throughput and accelerator utilization of specialized cnn
inference beyond increasing batch size,” in Proceedings of the 38th
International Conference on Machine Learning, 2021.

[7] F. Yu, D. Wang, L. Shangguan, M. Zhang, C. Liu, and X. Chen, “A
survey of multi-tenant deep learning inference on gpu,” 2022.

[8] S. Choi, S. Lee, Y. Kim, J. Park, Y. Kwon, and J. Huh, “Serving
heterogeneous machine learning models on Multi-GPU servers with
Spatio-Temporal sharing,” in 2022 USENIX Annual Technical Confer-
ence (USENIX ATC 22), 2022, pp. 199–216.

[9] A. Jahanshahi, H. Z. Sabzi, C. Lau, and D. Wong, “GPU-NEST:
Characterizing energy efficiency of multi-gpu inference servers,” IEEE
Computer Architecture Letters, vol. 19, no. 2, pp. 139–142, 2020.

[10] SWIMProjectUCB, “Swim project,” 2013. [Online]. Available:
https://github.com/SWIMProjectUCB/SWIM/wiki

[11] P. Hintjens, ZeroMQ: messaging for many applications. ” O’Reilly
Media, Inc.”, 2013.

