
CoFRIS: Coordinated Frequency and Resource
Scaling for GPU Inference Servers

Marcus Chow
Department of Computer Science and Engineering

University of California, Riverside
Riverside, USA

mchow009@ucr.edu

Daniel Wong
Department of Electrical & Computer Engineering

University of California, Riverside
Riverside, USA

danwong@ucr.edu

Abstract—Data centers have a variety of metrics that they
must adhere to. Not only do they have to meet the rate of
incoming requests, but each request also has a service level
objective (SLO) that they must satisfy. However, the average
latency of a single request typically is much faster than the tail
latency of the SLO. This creates a latency slack gap between the
average and tail latencies. This latency slack can be exploited
to reduce power by slowing down requests through a variety of
techniques, such as frequency and resource scaling. However, we
show that in an inference server context, frequency alone cannot
slow down a request far enough, leaving slack left to be explored.
To make up this slack, we propose COFRIS, a coordinated
frequency and resource scaling effort for GPU inference servers.
COFRISdynamically configures the GPU frequency and active
resources to minimize power while meeting variable throughput
and latency demands. We evaluate COFRISwith compute unit
(CU) level power gating and improve power consumption by
28% over no frequency or resource scaling, 13% improvement
over using only frequency scaling, and 5% over using only CU
resource scaling.

Index Terms—GPU Inference Server, Resource Scaling, Fre-
quency Scaling, Power Gating

I. INTRODUCTION

Data centers have increasingly adopted the use of GPUs to
accelerate Machine Learning (ML) and Inference-as-a-Service
workloads [12], [14], [30], [33]. However, prior works have
shown that a single inference request typically under-utilizes
GPU resources [17], [21]. While GPU resource utilization can
be improved through larger batch sizes, care must be taken
to ensure Service Level Objectives (SLO) are not violated,
which forces a GPU to process smaller batches [18]. As
SLOs are targeted for the tail or 99%-tile latency, there is
a large latency slack between the average response time and
tail latency, as illustrated in Figure 1. This latency slack can
be exploited to save power by employing different techniques
to push the average latency closer to the tail (red distribution
in Figure 1), such as using DVFS [6], [25], [28]. While DVFS
has been shown to be an effective method for reducing power,
it might not be able to completely bridge the latency slack.
This limitation is due to the limited number of frequency states
in the hardware, as well as the range of the states.

Another technique that has been used is resource scaling
within a single GPU [26], [27], [29]. Resource scaling takes
advantage of the fact that a workload may under-utilize

latency

sa
m
pl
e

av
er
ag

e

99
%

slack

Fig. 1: Black distribution describes the slack between average
and tail (99%) latency. Red distribution illustrates how isolated
scaling can leave gap to be exploited. Blue distribution outlines
our work to close the left over gap through cooridanted
frequency and resource scaling.

the GPU and therefore does not need all of the available
resources. We can use this to our advantage to save power,
by coordinating resource and frequency scaling we can close
the slack gap and reduce power even more (blue distribution).

Towards this end, we present COFRIS, a framework to
coordinate frequency scaling and resource scaling to improve
the energy efficiency of GPU inference servers. Our paper
makes the following contributions:

• Investigate frequency and resource scaling characteristics
of modern GPU hardware.

• Characterize a variety of inference workloads sensitivity
to frequency and resource scaling, with respect to latency,
throughput, and power consumption.

• Propose COFRIS , a runtime that minimizes GPU power
consumption coordinating frequency and resource Scaling
without violating SLO.

• We demonstrate that COFRIS can achieve 28% average
power reduction compared to the baseline.

II. BACKGROUND

GPUs are massively parallel architectures that can process
thousands of threads concurrently. GPUs consist of multiple
Compute Units (CUs) where each can process up to 2,560
threads in groups of 64 (AMD) or 32 (Nvidia) threads, called
a wavefront. These compute units are organized into clusters,
called Shader Engines (SEs). In our experiments, we use an

0 10 20 30 40 50 60
Active CUs

0.4

0.6

0.8

1.0
No

rm
al

ize
d

Po
we

r

0

2

4

6

8

Fig. 2: Power trends of resource (x-axis) and frequency scaling
(color bar) as measured on a real AMD MI50 GPU. While
resource scaling can reduce power consumption, current AMD
GPUs do not automatically cause CUs to be gated due to
limitations from AMD.

AMD MI50 GPU, that organizes 4 SEs of 15 CUs each, with
a total of 60 CUs. Through AMD’s CU Masking API [2]
and the ROCm System Management Interface (ROCm SMI)
Library [1], CU resources and frequency can be scaled, as
well as measuring the GPU’s total power. AMD’s MI50 has
9 frequency steps ranging from 925MHz to 1725MHz. We
refer to each combination of frequency step and number of
active CUs as the GPU’s configuration space. Although the
CU Masking API gives us control over which CUs are active,
previous work have shown that how active CUs are distributed
across SEs have a significant impact on performance and
power consumption [8]. Due to this, for our experiments, we
employ a conserved policy, which first finds the minimum
number of SEs that satisfy the number of active CUs. Then,
it evenly distributes the CUs across that subset of SEs. This
policy has been shown to avoid any load imbalance from
round-robin thread block scheduling.

A. Characterising Frequency/Resource Scaling in AMD GPUs

To highlight the power properties of frequency scaling and
resource scaling on inference servers, we sweep a range of
frequency levels and resource scaling levels while running our
suite of inference workloads (more details on workloads in
our evaluation section). Figure 2 shows the geometric mean
of these results, with the x-axis indicating the number of active
CUs, the color bars indicating the 9 frequency scaling steps,
and the y-axis indicating the GPU’s power normalized to the
maximum observed power consumption.

Across all frequency steps, we observe that the hardware
does not activate any CU or SE power gating as shown by the
relatively constant power when scaling CUs from 60 to 32.
Then, at 31, there is a dip in power which is most pronounced
at the highest frequencies, indicating potential power gating
is activity, allowing for most of the power savings to be seen
when scaling from 30 to 1 active CU.

However, the amount of power savings achievable through
resource scaling appears limited compared to the amount
of power savings achievable through frequency scaling. This
implies that resource scaling may be ineffective, compared to
frequency scaling, in saving power in current hardware.

Our experimental results directly contradict prior works that
have demonstrated effective CU-level power gating in real

800 1000 1200 1400 1600 1800
Frequency (MHz)

0.1

0.2

0.3

0.4

0.5

CU
 A

ct
iv

e
Id

le
 P

ow
er

 (W
)

Fig. 3: Calculated per-CU active idle power for each frequency.
Higher frequencies lead to higher power savings through
gating.

AMD GPUs through internal, firmware-level tools. [26], [27].
We discovered that this is because AMD’s CU Masking
API does not automatically cause the CUs to be power
gated [3]. In fact, these CU power gating features have
no publicly available control to end users, even though the
hardware does have internal CU-level power gating features.
Therefore, we as researchers, are not able to reproduce these
effects as demonstrated by AMD. In our work, to evaluate the
potential benefits of resource scaling, we will model both CU
and SE power gating granularities to evaluate power gating
due to resource scaling as though we have internal AMD
tooling.

B. Modeling Power Gating Savings in AMD GPUs

To estimate power savings that are available through internal
AMD tools but not consumers, we need to estimate the amount
of power-gating savings per CU. To model possible power
saving by power gating individual CUs, we first need to find
how much power a single CU consumes while in active idle
or CUActiveIdle, by using the following equation.

CUActiveIdle = (GPUActiveIdle −GPUIdle)/(NCU)

This includes the power while the CU is being clocked but
not actively running anything and the static leakage power.
We measure GPUIdle power, which is the power of the GPU
while nothing is running to be 15W on the MI50. Next, to find
GPUActiveIdle, we continuously launch empty kernels of 1
warp wide for a set amount of time and record GPUActiveIdle.
Because we are launching empty kernels, this ensures that we
are not potentially measuring any extra dynamic power from
a CU or the GPUs memory system. Dividing the total active
idle power by the number of CUs gives us the per CU active
idle power.

We discover that this active idle power differs for each
frequency as shown in Figure 3. We speculate that this may
be due to power gating not just saving static energy, but some
form of dynamic energy, such as dynamic clock gating where
more power is consumed with higher frequency. We see that
the greatest amount of power savings can come from running
at higher frequencies as leaving a CU ungated would result in
high unused power, which is consistent with previous intuition

0 10 20 30 40 50 60
Active CUs

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

Po
we

r

baseline cu se

Fig. 4: Calculated power savings from power gating at CU
and SE granularity. Per CU Gating saves on average 9% over
SE gating.

of multi-core scaling and the need for power gating unused
areas of the chip [11]. Using the calculated per CU idle power,
we can then model CU level power gating in the whole chip
by multiplying CUActiveIdle with the number of inactive CUs
and subtracting that from the measured GPU power.
CU vs SE granularity power gating. While area over-
heads are a significant consideration in chip design, in our
work, we aim to characterize how coordinating frequency
and resource scaling can reduce power usage regardless of
gating granularity. This is why we evaluate potential power
savings at CU and SE gating granularities in Figure 4. Here,
the baseline is the power trend of resource scaling at max
frequency (the top power curve in Figure 2). By subtracting
our modeled per CU active idle power from the baseline, we
can see how the granularity of power gating affects power
savings. At the SE granularity, we see distinct steps in power
savings corresponding to a SE being gated only when all of its
CUs are inactive. Whereas, if we gate at the CU granularity,
we get a near-linear reduction in power. In total, only when
power gating is invoked, we can see the benefits of resource
scaling in the GPUs. On average, per CU gating can save an
additional 9% over SE level gating.

III. COFRIS: FREQUENCY AND RESOURCE
COORDINATION AT RUNTIME

In this section, we introduce COFRIS, a runtime to co-
ordinate frequency scaling and resource scaling to close the
latency gap in GPU-based inference servers. COFRIS aims to
minimize the power consumption of inference servers by find-
ing the ideal trade-off between frequency and resource scaling
while satisfying the QoS requirement for varying incoming
RPS rates. To highlight the functionality of COFRIS, we will
first present a characterization study of the impact of frequency
and resource scaling on inference workloads. Then we will
present a framework that coordinates frequency and resource
scaling to enable energy-efficient GPU inference serving.

A. Characterizing Frequency and Resource Scaling for Infer-
ence Workloads

We now characterize how coordinated frequency and re-
source scaling affects inference workloads. In Figure 5 we
sweep through the GPUs frequency and resource configuration

while measuring the latency, throughput (RPS), and power for
various inference models.
Impact on latency. The impact on tail latency is shown in
the background of each figure as a green heatmap, ranging
from 1x to 2x. SLO is chosen as 2x the latency of the model
when running at max frequency and full resources, which is
similar to the methodology used in previous works [5], [8],
[20]. Later, we will perform a sensitivity analysis with varying
SLO levels. For now, any configuration that does not meet the
SLO is shown as a black box in the heatmap and is taken as
an invalid configuration but is shown for completion.

We see that scaling down frequency increases latency at a
faster rate than resource scaling. (It gets darker green quicker
going top to bottom than right to left.) However, even at the
slowest frequency we only start to see SLO violations when
we additionally scale down to 30 or 15 CUs, depending on
the tolerance of the model. This shows that frequency scaling
alone is not able to fully exploit the large latency slack between
average and tail latencies. Only with coordination between
both frequency and resource can we squeeze as much slack as
possible for energy savings.
Impact on power and RPS. For Figure 5a, we show
the power consumption with CU granularity power gating
of each configuration and interpolated it as contour lines to
better visualize the trend. The colors of the contours are
normalized to the top right configuration. In Figure 5b, we
measured the max throughput achieved for each configuration
with the highest RPS, which, again, would be the top right
of each figure. Each contour can be seen as a Pareto front,
as moving along the curve will not provide any power or
RPS benefits, respectively. However, we need to consider that
the throughput of the system can match the incoming RPS,
as well as, not violate SLO. To find the optimal point we
search the configurations along each curve and plot a yellow
point indicating the highest RPS (Figure 5a) or lowest power
(Figure 5b) on the curve, respectively.

Intuitively, by scaling down frequency we see consistent
drops in RPS, indicated by going down the contours. However,
with resource scaling, the RPS remains stable to various
degrees. This is because inference workloads have been shown
to under-utilize the GPU. This allows us to restrict compute
resources to reduce power but without having any effect on
the server’s throughput. Specifically, for albert, alexnet,
and vgg19, the optimal configuration for a specific RPS,
is at the knee point of the curve where resource scaling
starts to affect RPS drastically. However, at around 15-10
active CUs, resource scaling becomes so extreme that the RPS
is limited at all frequency level, indicated by the contours
becoming vertical. The contour lines for shufflenet and
squeeznet are not as defined as they under-utilize the GPU
to such a degree that frequency and resource scaling have little
effect on RPS.
CU-level vs SE-level power gating Lastly, we compare the
optimal configurations based on either CU-level power gating
(Figure 6a or SE-level power gating (Figure 6b). Each figure
shows the geomean of all workloads RPS and power. Here

15 30 45
0
2
4
6
8

Fr
eq

ue
nc

y
albert

15 30 45

resnet152

15 30 45

densenet201

15 30 45

alexnet

15 30 45

resnext101

15 30 45

shufflenet

15 30 45

squeezenet

15 30 45

vgg19

1.0

1.5

2.0

0.0

0.5

1.0

(a) Normalized Power Curves (Color bar) with yellow points indicating highest throughput for a given power level.

15 30 45
0
2
4
6
8

Fr
eq

ue
nc

y

albert

15 30 45

resnet152

15 30 45

densenet201

15 30 45

alexnet

15 30 45

resnext101

15 30 45

shufflenet

15 30 45

squeezenet

15 30 45

vgg19

1.0

1.5

2.0

0.0

0.5

1.0

(b) Normalized RPS Curves (Color bar) with yellow points indicating lowest power consumption for a given RPS level.

Fig. 5: Characterizing the effect of frequency and resource scaling with modeled CU/SE power gating. Green heat map
represents the achieved latency, with black boxes indicating SLO violation. (a) Top figure, shows the measured power adjusted
for CU-granularity power gating, with yellow points indicating the configuration that achieves the highest throughput for a
given RPS contour level. (b) Bottom figure, shows the achieved RPS as contours, with yellow points indicating the configuration
that achieves the lowest power consumption for that contour level.

15 30 45
0

2

4

6

8

Fr
eq

ue
nc

y

Geomean

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) CU Gated

15 30 45
0

2

4

6

8

Fr
eq

ue
nc

y

Geomean

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) SE Gated

Fig. 6: Geomean of workloads showing RPS (blue, filled
contours) and power (red contour lines), for both CU (a)
and SE (b) level power gating. CU-level gating allows more
aggressive resource scaling.

RPS is shown as the (background) blue, filled contours and
power has the red contour lines on top. Again, each power
line is marked with the configuration that achieves the highest
RPS. On average the optimal amount of resources for a per
CU power-gated GPU is just over the 30 CU mark. While,
for an SE power-gated GPU, it is just below 45 CUs, as the
SE will not be gated unless all CUs are inactive. In general,
CU-level gating provides more aggressive resource scaling
opportunities for power savings. While the max RPS for the
lowest power levels are at the lowest frequency scale, this is
also typically where there start to be SLO violations, making
these configurations invalid.

B. CoFRIS Implementation

The design objective of COFRIS is to minimize power of a
GPU while maintaining SLO for a variable incoming request
rate. Figure 7 presents an overview of COFRIS. COFRIS con-
sists of offline profiled frequency-resource response curves
for a given inference model, along with an online runtime
that dynamically determines the frequency/resource scaling
configuration given a model’s incoming RPS rate.

We utilize the observations stated in subsection III-A to con-
figure the GPUs frequency and amount of available resources.
As we saw previously, each inference model has drastically
unique tolerances to frequency scaling, resource scaling, and
SLO tolerance. Due to this, we profile each model’s sensitivity

Online
COFRISServing Framework

Set ConfigurationGPU

Incoming RPS

Offline

Freq
CU

RPS

Incoming RPS

Optimal Configuration

Fig. 7: Overview of COFRIS

offline similar to many prior works on spatially partitioned
GPU-based inference servers [5], [8], [20]. First, we determine
the maximum RPS and baseline tail latency based on running
the model at the max frequency and CUs. This gives us our
model’s RPS range for our system. Next, at each RPS step
from 0 to max, the optimal frequency/resource configuration
is determined to be the one that minimizes GPU power, while
having no SLO violations. This process is seen in Figure 7
inside the Offline box.

This frequency/resource response curve is then stored in a
table in the serving framework runtime. Then, during runtime,
COFRIS takes incoming RPS information from the serving
framework (i.e. TorchServe, Trition, TensorflowServing, etc.)
and looks up the optimal configuration from the table and sets
the frequency and available compute resources. Polling is done
every 0.5 seconds, and uses user-level APIs (either through
ROCm SMI or CU Masking APIs) to set the configuration.

IV. EVALUATION

A. Evaluation Methodology

We evaluated COFRIS on a server featuring an AMD MI50
GPU, 2 AMD EPYC 7302 16-Core Processor, 512 GB RAM,
Ubuntu 18.04 LTS with kernel 5.4.0. The AMD MI50 GPU
contains 60 Compute Units across 4 Shader Engines. The
server runs the AMD ROCm 5.2 runtime stack. While CU
power gating does exist on the hardware, but is not exposed
to consumers [3], [26], [27]., we evaluate the benefits of CU
power gating as previously detailed in Section II-B.
Inference server. For our evaluation, we built our own
custom inference server framework as most existing inference
servers, such as TensorRT, are designed for Nvidia-based

TABLE I: Inference workload used and 95% tail latency (ms).

Model 95% lat. (ms)

albert [23] 27
alexnet [22] 91

densenet201 [15] 72
resnet152 [13] 11
resnext101 [35] 154
shufflenet [24] 8
squeezenet [16] 8

vgg19 [31] 81

100 200 300 400 500 600 700 800 900
time

0.0
0.2
0.4
0.6
0.8

1

rp
s

Fig. 8: Client Request Trace. Derived from Facebook’s SWIM
Dataset [32]

GPU systems and tightly integrate Nvidia-specific features.
Our inference server consists of (1) an Inference Front-end, a
multi-threaded process responsible for accepting asynchronous
gRPC requests from clients and sending back the inference
result (response), (2) Request/Response Queues, where queues
are shared memory segments for storing request’s (response’s)
data to be served (sent to the client)., and (3) Workers, where
each worker is an instance of a ML framework (such as
PyTorch, Tensorflow, etc.) that services the inference request.
Inference model Workloads. The inference models evaluated
are listed in Table I. For this work, we fix our request’s
batch size to 1, as this represents scenarios where servers
require very low latency. This will also allow us to show the
impact of scaling on the GPU without any interaction with
dynamic batch sizing. However, previous works have seen
improvement in coordinating the batch size and DVFS [28]
and there can be future opportunities to coordinate all three.
We used Facebook’s SWIM dataset [32] as the basis of our
client request generator. We normalized the trace to be fifteen
minutes long and each workload’s max RPS being a load of
1 as shown in Figure 8.
Power management policies. To evaluate COFRIS, we
compare against six scaling policies as follows:
Baseline: No frequency or resource scaling is used. This

means the GPU is consistently running at max frequency with
all available CUs.
FS: Frequency Scaling using the max resources.
RS-SE Gated: Resource Scaling with power-gating at the

SE-granularity.
RS-CU Gated: Resource Scaling with power-gating at the

CU-granularity.
COFRIS-SE Gated: Coordinated Frequency and Re-

source Scaling with power-gating at the SE granularity.
COFRIS-CU Gated: Coordinated Frequency and Re-

source Scaling with power-gating at the CU granularity.
1) Results: GPU Power: Figure 9 plots the average power

of the GPU normalized to our baseline policy. On aver-
age RS-SE Gated and FS show similar power reduction.

albert resnet152 densenet201 alexnet resnext101 shufflenet squeezenet vgg19 geomean

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d
Po

we
r

Baseline RS - SE Gated FS COFRIS - SE Gated RS - CU Gated COFRIS - CU Gated

Fig. 9: Average Power for each power management policy.

Baseline RS - SE Gated FS COFRIS - SE Gated RS - CU Gated COFRIS - CU Gated

0.6

0.8

1

No
rm

al
ize

d
Po

we
r

1.25x 1.5x 2.0x

Fig. 10: Geomean of average power for each policy, with
varying SLO constraints.

RS-CU Gated demonstrates the potential savings of having
a finer power gating granularity which performs better than
RS-SE Gated except for alexnet, resnext101, and
vgg19. However, individual models show varying amounts
of sensitivity to power management policies, e.g. RS-SE
Gated saves more power for albert, shufflenet, and
squeezenet, therefore, there is no clear winner. This
demonstrates that resource scaling can potentially provide
more savings than frequency scaling.

One important point to note is the granularity between
frequency vs resource steps. With our GPU we can control
each CU individually but are limited to only 9 frequency steps
that are not uniform in distance (as illustrated in Figure 3).
This may account for RS-CU Gated outperforming FS due
to the limitations of frequency steps. It may be possible if there
were more steps at lower frequencies we would be able to see
more improvement from frequency scaling. Future exploration
in under-clocking along with voltage control may lead to
more opportunities. In any regard, we show that coordinating
frequency and resource scaling has the potential to lead to the
most power savings.

Coordinating both frequency and resource scaling with
COFRIS-SE Gated saves 6% more power over FS. This
indicates that neither resource nor frequency scaling alone
can exploit the latency slack to its fullest extent and by
coordinating both we can extract more power savings oppor-
tunities. In total, COFRIS-CU Gated outperforms all other
policies With 28% average power decrease over baseline, 13%
improvement over FS, and 5% over the next best which
is RS-CU Gated. This demonstrates the energy savings
potential for enabling CU/SE power gating for consumer
GPU devices.

Sensitivity to SLO: Next we explore how frequency/re-
source scaling can be affected by various levels of latency
constraint. Figure 10 displays that power savings can still be
achieved even when the latency slack is tightened. While we
do observe the trend that having a larger slack means a larger

Baseline RS - SE Gated FS COFRIS - SE Gated RS - CU Gated COFRIS - CU Gated0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
No

rm
al

ize
d

La
te

nc
y

1.25x 1.5x 2.0x

Fig. 11: 95th percentile tail latency achieved for each policy.
Latency slack is used up while maintaining SLO.

power reduction, all policies are able to achieve almost the
same level of power savings (within 2%) with a slack of 1.25x
and 1.5x compared with 2.0x.

Finally, to evaluate if we are meeting SLOs, we plot the
geomean of 95th percentile tail latency achieved for each
policy in Figure 11. In all scenarios, we meet the SLO. RS-SE
Gated and COFRIS-SE Gated flatten out after 1.5x. This
is due to the fact that the SE-gated policies most often choose
the resource configuration of 45 CUs, as choosing any less
doesn’t save any power but does lower the RPS it is able to
handle even if it is within SLO. FS and CU-gated policies
are able to achieve tail latency closer to the SLO target
and minimize latency slack, however at most only reaches
1.75x. This indicates that there is possibly more latency slack
opportunity that can be pushed closer to the SLO for power
savings opportunity.

V. RELATED WORKS AND DISCUSSION

Prior works have used frequency scaling [19], deep sleep
states [7], or coordination of both [6] to reduce power for
latency-critical services on CPUs by closing the latency slack.
GPUs frequency and power states have also been leveraged to
optimize the performance and power efficiency of individual
kernels [25]. Resource scaling has been used explicitly for
GPUs as they are parallel processors with many cores [29],
[34].

Specifically for GPU inference servers, frequency scaling
has been combined with dynamic batching [28]. For our work,
we specifically propose coordinating frequency and resource
scaling for latency-critical and dynamic throughput inference
servers. While dynamic batching has been shown to improve
utilization it may not always be possible to increase the batch
size, as it leads to significant increases in tail latency and it
might lead to SLO objectives.

Prior works have also looked at resource scaling within
inference servers. InferLine [9] provisions and scales at the
GPU level in a GPU cluster while maintaining SLO, while
our work focuses on resource scaling within a single GPU.
AutoInfer [4] coordinates a resource scaling and batch size
to improve total GPU utilization, however, they do not try to
minimize GPU power consumption for their configurations.
Our work differs from prior works as we coordinate resource
and frequency scaling within a single GPU to minimize GPU
power, while showcasing the potential impact of CU or SE
level power gating.

A. Implications of Fine-grain Power Gating in GPUs:

Prior works have shown that power gating at fine granulates
comes with extra area overhead costs along with diminishing
returns in energy savings. [10] While we do not analyze area
overhead in this work, past works have shown that AMD GPUs
have some form of per CU gating, but was only achieved with
internal tools [26], [27]. This work aims to showcase the
potential savings with either fine-grain per CU Gating or
per SE gating and hope to motivate industry to bring these
internal tools to external researchers or these features into
commercial products.

Although we modeled the potential power savings of CU/SE
power gating, we believe our findings can be generalized to
other GPU architectures as many architectures have similar
architectural organizations. We believe this work can be gener-
alized to any GPUs from AMD or Nvidia. Nvidia uses similar
structures in their GPUs, they call CU a Streaming Multipro-
cessor (SM) and the SE is called a Graphics Processing Cluster
(GPC). CPUs have long benefited from fine-grain power gating
of compute units through C-states, and we believe our results
motivate the need for similar fine-grain power gating states for
GPUs to unlock further energy efficiency potentials.

VI. CONCLUSION

Latency slack in inference servers leaves a large gap be-
tween the average latency and service level objectives. This
slack can be exploited by scaling the GPUs frequency and
resources to reduce total GPU power usage without violating
SLO. While DVFS has been previously explored to bridge
the slack gap, our work shows that it typically is not able to
push the average latency far enough, leaving untapped power
savings. We propose COFRIS which coordinates frequency
and resource scaling for GPU inference servers. During our
initial exploration, we found that current AMD GPUs do not
automatically initiate power gating, and thus evaluate using
modeled CU / SE power gating. We hope this work motivates
the importance of enabling programmer control over power
gating. We show that SE-level power gating can be effective,
but finer-grain CU-level power gating proves to be the most
efficient. In total, COFRIS with CU-level power gating lowers
power by 28% over baseline, a 13% improvement over FS,
and 5% over isolated CU-power gated resource scaling with
modeled CU/SE power gating.

ACKNOWLEDGEMENT

This work is partly supported by National Science Founda-
tion under grants CNS-1955650 and CNS-2047521. We would
also like to thank the anonymous reviewers for their invaluable
comments and suggestions.

REFERENCES

[1] AMD, “rocm smi lib.” [Online]. Available: https://github.com/
RadeonOpenCompute/rocm smi lib

[2] AMD, “Stream management hip api.” [Online]. Available: https:
//docs.amd.com/bundle/HIP-API-Guide-v5.4.1/page/a00183.htmlf

[3] AMD, “Changing number of compute units issue #5
radeonopencompute/roc-smi,” 2017. [Online]. Available: https:
//github.com/RadeonOpenCompute/ROC-smi/issues/5

https://github.com/RadeonOpenCompute/rocm_smi_lib
https://github.com/RadeonOpenCompute/rocm_smi_lib
https://docs.amd.com/bundle/HIP-API-Guide-v5.4.1/page/a00183.htmlf
https://docs.amd.com/bundle/HIP-API-Guide-v5.4.1/page/a00183.htmlf
https://github.com/RadeonOpenCompute/ROC-smi/issues/5
https://github.com/RadeonOpenCompute/ROC-smi/issues/5

[4] B. Cai, Q. Guo, and X. Dong, “Autoinfer: Self-driving management for
resource-efficient, slo-aware machine learning inference in gpu clusters,”
IEEE Internet of Things Journal, vol. 10, no. 7, pp. 6271–6285, 2022.

[5] S. Choi, S. Lee, Y. Kim, J. Park, Y. Kwon, and J. Huh, “Multi-model
machine learning inference serving with gpu spatial partitioning,” arXiv
preprint arXiv:2109.01611, 2021.

[6] C.-H. Chou, L. N. Bhuyan, and D. Wong, “µDPM: Dynamic power
management for the microsecond era,” in HPCA, 2019.

[7] C.-H. Chou, D. Wong, and L. N. Bhuyan, “Dynsleep: Fine-grained
power management for a latency-critical data center application,” in
ISLPED, 2016.

[8] M. Chow, A. Jahanshahi, and D. Wong, “KRISP: Enabling kernel-wise
right-sizing for spatial partitioned gpu inference servers,” in HPCA.
IEEE, 2023.

[9] D. Crankshaw, G.-E. Sela, X. Mo, C. Zumar, I. Stoica, J. Gonzalez,
and A. Tumanov, “Inferline: latency-aware provisioning and scaling
for prediction serving pipelines,” in Proceedings of the 11th ACM
Symposium on Cloud Computing, 2020, pp. 477–491.

[10] K. Dev, S. Reda, I. Paul, W. Huang, and W. Burleson, “Workload-aware
power gating design and run-time management for massively parallel
gpgpus,” in ISVLSI. IEEE, 2016.

[11] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in inter-
national symposium on Computer architecture, 2011.

[12] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vigfusson,
and J. Mace, “Serving DNNs like clockwork: Performance predictability
from the bottom up,” in OSDI, 2020.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[14] Y. Hu, R. Ghosh, and R. Govindan, “Scrooge: A cost-effective deep
learning inference system,” in Proceedings of the ACM Symposium on
Cloud Computing, 2021.

[15] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in conference on computer vision
and pattern recognition, 2017.

[16] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and < 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[17] A. Jahanshahi, H. Z. Sabzi, C. Lau, and D. Wong, “GPU-NEST:
Characterizing energy efficiency of multi-gpu inference servers,” IEEE
Computer Architecture Letters.

[18] P. Jain, X. Mo, A. Jain, H. Subbaraj, R. S. Durrani, A. Tumanov,
J. Gonzalez, and I. Stoica, “Dynamic space-time scheduling for gpu
inference,” arXiv preprint arXiv, 2018.

[19] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik:
Fast analytical power management for latency-critical systems,” in
International Symposium on Microarchitecture, 2015.

[20] Y. Kim, Y. Choi, and M. Rhu, “PARIS and ELSA: an elastic scheduling
algorithm for reconfigurable multi-gpu inference servers,” in DAC, 2022.

[21] J. Kosaian, A. Phanishayee, M. Philipose, D. Dey, and R. Vinayak,
“Boosting the throughput and accelerator utilization of specialized cnn
inference beyond increasing batch size,” in ICML, 2021.

[22] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv preprint arXiv:1404.5997, 2014.

[23] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: A lite bert for self-supervised learning of language representa-
tions,” arXiv preprint arXiv:1909.11942, 2019.

[24] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in ECCV, 2018.

[25] A. Majumdar, L. Piga, I. Paul, J. L. Greathouse, W. Huang, and D. H.
Albonesi, “Dynamic gpgpu power management using adaptive model
predictive control,” in HPCA, 2017.

[26] A. Majumdar, G. Wu, K. Dev, J. L. Greathouse, I. Paul, W. Huang,
A.-K. Venugopal, L. Piga, C. Freitag, and S. Puthoor, “A taxonomy of
gpgpu performance scaling,” in IISWC, 2015.

[27] A. McLaughlin, I. Paul, J. L. Greathouse, S. Manne, and S. Yala-
manchili, “A power characterization and management of gpu graph
traversal,” in ASBD, 2014.

[28] S. M. Nabavinejad, S. Reda, and M. Ebrahimi, “Coordinated batching
and dvfs for dnn inference on gpu accelerators,” IEEE Transactions on
Parallel and Distributed Systems, 2022.

[29] I. Paul, W. Huang, M. Arora, and S. Yalamanchili, “Harmonia: Balancing
compute and memory power in high-performance GPUs,” ISCA, 2015.

[30] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS:
Automated model-less inference serving,” in USENIX ATC 21, 2021.

[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[32] SWIMProjectUCB, “Statistical workload injector for mapre-
duce (swim),” 2016. [Online]. Available: https://github.com/
SWIMProjectUCB/SWIM/wiki

[33] Q. Weng, “MLaaS in the wild: Workload analysis and scheduling in
Large-Scale heterogeneous GPU clusters,” in NSDI, 2022.

[34] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin, and
Y. Jia, “Antman: Dynamic scaling on gpu clusters for deep learning.” in
OSDI, 2020.

[35] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in CVPR, 2017.

https://github.com/SWIMProjectUCB/SWIM/wiki
https://github.com/SWIMProjectUCB/SWIM/wiki

	Introduction
	Background
	Characterising Frequency/Resource Scaling in AMD GPUs
	Modeling Power Gating Savings in AMD GPUs

	CoFRIS: Frequency and Resource Coordination at Runtime
	Characterizing Frequency and Resource Scaling for Inference Workloads
	CoFRIS Implementation

	Evaluation
	Evaluation Methodology
	Results

	Related Works and Discussion
	Implications of Fine-grain Power Gating in GPUs:

	Conclusion
	References

