
BlockMaestro: Enabling Programmer-Transparent
Task-based Execution in GPU Systems
AmirAli Abdolrashidi∗, Hodjat Asghari Esfeden∗, Ali Jahanshahi∗, Kaustubh Singh†∗

Nael Abu-Ghazaleh†∗ and Daniel Wong†
∗Department of Computer Science and Engineering
†Department of Electrical and Computer Engineering

University of California, Riverside
Riverside, CA 92521

{aabdo001,hasgh001,ajaha004,ksing057,naelag,danwong}@ucr.edu

Abstract—As modern GPU workloads grow in size and com-
plexity, there is an ever-increasing demand for GPU computa-
tional power. Emerging workloads contain hundreds or thousands
of GPU kernel launches, which incur high overheads, and
exhibit data-dependent behavior between kernels, which requires
synchronization, leading to GPU under-utilization. Task-based
execution models have been proposed to solve these issues, but
they require significant programmer effort to port applications to
proprietary task-based programming models in order to specify
tasks and task dependencies. To address this need, we propose
BlockMaestro, a software-hardware solution that combines com-
mand queue reordering, kernel-launch-time static analysis, and
runtime hardware support to dynamically identify and resolve
thread-block level data dependencies between kernels. Through
static analysis of memory access patterns at kernel-launch-time,
BlockMaestro can extract inter-kernel thread block-level data
dependencies. BlockMaestro also introduces kernel pre-launching
to reduce the kernel launch overheads experienced by multiple
dependent kernels. Correctness is enforced by dynamically re-
solving thread block-level data dependency at runtime through
hardware support. BlockMaestro achieves an average speedup
of 51.76% (up to 2.92x) on data-dependent benchmarks, and
requires minimal hardware overhead.

Index Terms—GPGPU, SIMD, Data Dependency, Thread
Block Scheduling, Just-in-time

I. INTRODUCTION

Graphics processing units (GPUs) today are computation-
ally powerful, power-hungry, and massively parallel devices,
capable of processing applications using thousands of threads
at once, taking advantage of its single-instruction, multiple-
thread (SIMT) paradigm [2], [3], [6], [21], [31], [36], [37],
[44], [52], [55], [57], [58]. As modern workloads grow in
size and complexity, GPUs are stressed more than ever be-
fore [32], [33], [41]. For example, they are one of the main
accelerators behind modern machine learning frameworks [1],
[14], [45] where typically every layer is encapsulated in a
GPU kernel, and the main accelerator behind future exascale
computers [16], [17], [50] where scientific computing applica-
tions make heavy use of iterative structured grid computations
exhibiting wavefront parallelism [9], [10], [29], with multiple
GPUs working together through specialized interconnects [40],
[48].

These emerging workloads place significant burden on
GPUs. By launching hundreds of kernels over the course of an

application’s execution, kernel launch overheads can become
significant [13], [20], [27], [39]. These kernels also typically
exhibit significant data dependencies between them [4], [10],
[26], [30]. For example, layers in CNNs produce data that is
consumed in the next layer. In stencil computations, which
are common in scientific computing, operations performed
on elements are dependent on the state of neighboring el-
ements. These inter-kernel data dependencies are typically
enforced in a coarse-grain manner through implicit barrier
synchronizations in the form of kernel launches, which can
result in stalling of computation that already have satisfied
dependencies.

To circumvent these issues, many task-based execution
models and runtimes have been proposed [4], [5], [10], [11],
[19], [24], [26], [28], [35], [46], [54], [59]. These frameworks
require programmers to decompose the application into tasks,
and express task dependencies through proprietary program-
ming models (such as AMD ATMI [5], CUDA Graphs [43],
OpenMP Tasks [7], etc.), which will then be enforced by the
runtime. The main benefit of task-based execution is that (1)
kernel launch overhead can be significantly reduced by collec-
tively launching groups of kernels as a whole [5], [43] or by
launching a persistent kernel which process tasks that enter its
work queue [10]; and (2) dependent tasks can begin executing
as soon as their data dependencies are met. However, to gain
these benefits, existing GPU applications must be refactored
into these proprietary task-based programming models.

In this work, we propose BlockMaestro, which provide
the benefits of task-based execution using existing SIMT
programming models (such as CUDA or AMD HIP) and
avoids the need for heavy code modification. The key insight
behind BlockMaestro, is that kernel pre-launching and fine-
grain inter-kernel data dependency resolution achieves the
benefits of task-based execution models. By pre-launching de-
pendent kernels, we are able to mask kernel launch overheads.
To enforce correctness, thread blocks (TBs) of pre-launched
dependent kernels are not executed until thread block-level
data dependencies are resolved. Inter-kernel thread block data
dependencies between neighboring kernels (which we denote
as parent and child kernels, Kp and Kc, respectively) can be
represented as bipartite graphs as illustrated in Figure 1. The

Kp Kc

TB0

TB2

TB3

TB1

TB4

TB5

TB 0 TB 1

TB 2 TB 3

TB 0 TB 1

TB 2 TB 3

TB 4 TB 5

TB 0 TB 1 TB 2

TB 3 TB 4 TB 5

TB 6 TB 7 TB 8

K’c
TB0

TB2

TB3

TB1

TB4

TB5

TB6

TB7

TB8

K’p

TB0

TB2

TB3

TB1

TB4

TB5

TB0

TB2

TB3

TB1

Fig. 1. Data shared by the kernels constitutes dependencies among their TBs,
shown as a series of bipartite graphs.

entire GPU application can then be represented as a series of
these bipartite graphs, collectively representing a task graph.
We present a “Thread Blocks as Tasks” tasking paradigm
that leverages the SIMT programming model’s property where
grids of thread blocks are inherently tasks with explicit in-
put/output through global memory as defined in kernel launch
parameters.

Therefore, the key to achieving the benefits of task-based
execution is to automatically extract and enforce these bipartite
dependency graphs while pre-launching dependent kernels. In
short, this paper makes the following contributions:

• We propose kernel pre-launching in order to mask kernel
launch overheads of dependent kernels. In addition, we
introduce command queue reordering to increase the
opportunity for kernel pre-launching.

• We leverage compiler support to extract inter-kernel
data dependency of existing GPU applications without
the need for programmer intervention. The well-defined
structure of GPU applications provided by the SIMT pro-
gramming model allows us to extract data dependencies
in the form of bipartite dependency graphs.

• We propose solutions to resolve fine-grain data depen-
dencies between inter-kernel thread blocks. This ensures
the correctness of pre-launched kernels and enables de-
pendent thread blocks to start executing as soon as their
data dependencies are satisfied.

In Section II, we provide background and motivate our
work. Section III details BlockMaestro. We will then present
the results of our evaluation in Section IV. Relevant contribu-
tions in literature are discussed in Section V, and the paper is
concluded in Section VI.

II. BACKGROUND

A. GPU Execution

API calls and command queue: In GPU applications, the host
calls a series of API functions to interact with the GPU.
Common API calls include kernel launch, memory transfer
to/from the host, synchronization, etc. All API calls are sent
to a command queue (also known as Stream in CUDA and
HIP terminology) for processing. The API calls (also known
as Events) are serialized in the command queue with only
one event being processed at a time. Therefore, only a single

kernel may be executing from a single command queue. To
support concurrent execution of independent kernels, kernels
can be issued to multiple command queues and it is possible to
synchronize kernels across command queues through complex
synchronization events.

From the host’s point-of-view, not all API calls are blocking.
By default, memory operations, such as memory allocation
and transfer to/from the GPU, are synchronous (blocking), and
kernel launches are asynchronous (non-blocking). Therefore,
when the host launches a GPU kernel, the host can continue
to execute code, but it must explicitly synchronize and wait
until the GPU kernel has completed before using the kernel’s
output. Therefore, the programmer should be aware of any
dependencies between the host and the GPU, , including read-
after-write (RAW), and ensure proper synchronization.

Compiling GPU programs to assembly: GPU programs are
typically written in high-level languages, such as CUDA,
OpenCL, or HIP. During the compilation process, these pro-
grams are translated into assembly. For example, HIP is com-
piled into GCN assembly and CUDA is compiled into PTX, a
form of intermediate language (IR), which is then just-in-time
(JIT) compiled at kernel-launch-time into SASS assembly.
Depending on the target GPU and the language used, there
is an offline compilation stage (HIP to GCN, CUDA to PTX)
and potentially a second just-in-time compilation stage (PTX
to SASS). The just-in-time compilation stage enables further
optimization because additional parameters at kernel-launch-
time, such as thread block size and grid size, are known and
can be further optimized.

Kernel launch overheads: Due to the complexity in launching
a computation kernel on the GPU, kernel launch overhead
is not negligible. Prior works have found that each kernel
launch can incur an overhead of 5− 30µs [4], [27]. To make
matters worse, many GPU applications are also scaling in
complexity and size. For example, modern machine learning
frameworks that utilizes GPUs for compute-heavy operations
(such as convolution) can incur hundreds of kernel calls as
ML models grow. Many workloads also require significant
synchronization which are implemented implicitly as kernel
calls. Towards this end, many prior works have explored how
to reduce kernel launch overheads [13], [20], [27], [39]. (See
related works section for details of prior works.)

Another common approach to reduce kernel launch over-
heads is to port programs in the SIMT programming model
into a task-based programming model. Task-based runtimes
can avoid kernel launch overheads and dynamically resolve
data dependencies between tasks, for example, by using per-
sistent kernels to process tasks in the work queue.

B. Task-based execution model paradigms

Many task-based programming models allow programmers
to specify series of operations (tasks) and the dependencies
between them. Existing task-based programming models can
be categorized broadly as following a “Tasks as Kernels”
or “Tasks as Thread Blocks” paradigm. We will detail each

paradigm and discuss the strength and weaknesses of each,
and propose a new “Thread Blocks as Tasks” approach.

“Tasks as Kernels”: In this paradigm, tasks in a task graph are
mapped to kernels. For example, AMD ATMI [5] and CUDA
Graphs [43] allow users to define kernels and the dependen-
cies between them. To alleviate the effects of kernel launch
overheads, these frameworks aim to identify common static
operation graphs consisting of many kernels and consolidate
the kernel launch into a single task graph launch. While these
frameworks can lower the overhead from kernel launches,
they fail to take advantage of fine-grain data dependencies
that exist between kernels. For example, thread blocks in a
dependent kernel may be ready to execute due to satisfied
dependencies from thread blocks from the kernel before it,
but cannot begin execution until their kernel is launched.
Therefore, to handle these dependency-stalled thread blocks,
finer-grain tasking paradigms are warranted.

“Tasks as Thread Blocks”: A finer-grain approach to task-
based execution is to map and execute tasks in a task graph
as thread blocks. These task graphs can be defined by the
programmer using a variety of task-based programming mod-
els [4], [10], [11], [24], [59] which defines tasks and their
dependencies. At a high-level, these GPU task-based runtimes
resolve dependencies between the tasks and then sends ready
tasks to a job queue, where they are processed by a persistent
kernel. By using a persistent kernel approach, kernel launch
overheads are avoided.

This fine-grain dynamic dependency resolution, along with
persistent kernel, can reduce the amount of dependency-
stalled tasks waiting for execution. However, there are run-
time overheads with task management and require significant
programmer effort to map algorithms into new task-based
programming models. Specifically, it requires the programmer
to have domain-specific knowledge of the algorithm and be
able to decompose the steps and express it in the form of a
task graph.

“Thread Blocks as Tasks”: The goal of our work is to enable
the benefits of task-based execution models with minimal
programmer intervention. At the core of every task-based
programming model is the ability to define a task graph for
execution. Towards this end, we propose a “Thread Blocks as
Tasks” paradigm where, instead of programmers defining tasks
which are mapped and executed as thread blocks, we extract
and derive tasks and task graphs from the existing thread
blocks in the SIMT programming model. We take the view
that grids of thread blocks are essentially tasks with explicit
input/output through global memory as specified in kernel
launch parameters. We leverage the properties of multi-kernel
GPU applications in order to build a task graph from a series
of bipartite dependency graphs (essentially, a decomposed task
graph). To alleviate the overhead of kernel launch overheads,
we propose pre-launching kernels before their dependencies
are met and relying on dynamic data dependency resolution
in hardware to enforce dependencies. This effectively removes
the kernel launch overhead from the critical path by masking

the kernel launch.
Towards this goal, our main challenges in achieving this

new tasking paradigm are: (1) How to identify and extract
inter-kernel thread block-level data dependency to derive task
graphs? (2) How to reduce kernel launch overheads? and
(3) How to dynamically resolve task data dependencies in a
lightweight manner?

Task partitioning limitations: In order to remap applications
into task-based execution, the problem space must be parti-
tioned into tasks. The tasks can be partitioned either statically
based on the algorithmic properties of the workload (for
example, pipeline stages in image rendering) or dynamically
based on the input data. For example, CUDA Graph can record
and capture a static task graph of kernels executing across
streams. This operation is time-intensive and, in essence,
profiles the workload to create a static graph which executes
repeatedly. Static task graphs are not well-suited for workloads
which are input-dependent. For example, task graphs structure
are based on input sparse matrix for sparse solvers.

Typically, input-dependent task graphs require run-time in-
formation in order to partition tasks. Due to this, it is difficult
to extract task graphs from existing applications in our pro-
posed framework. Thus, the goal of this work is to demonstrate
the ability to extract static fine-grain task graphs, similar to
CUDA Graph, in order to provide programmer-transparent
task-based execution. We leave the ability to handle input-
dependent task graphs for future work.

III. BLOCKMAESTRO

A. Overview

In this section, we present BlockMaestro, which enables
programmer-transparent support for the “Thread blocks as
Tasks” tasking paradigm on GPUs. BlockMaestro consists
of three main components: (1) extracting fine-grain inter-
kernel data dependencies from existing GPU applications; (2)
kernel pre-launching to mask kernel launch overheads; and (3)
dynamic inter-kernel data dependency resolution to ensure cor-
rectness of pre-launched kernels. Combined, these techniques
allow GPU programs written in existing SIMT programming
models to gain the benefits of task-based execution without
the overhead of proprietary task-based programming models.

Figure 2 illustrates the operation of BlockMaestro. In this
illustrative figure, we show the launching of four kernels, K1
to K4, along with their corresponding thread blocks (labeled
0-2 for K1, 3-6 for K2, 7-8 for K3; blocks omitted for
K4). The vertical bars represents each kernel’s launch over-
head. Figure 2a shows the execution timeline of the baseline
GPU where kernel execution are serialized. In the baseline
scenario, inefficiencies exist due to kernel launch overheads
and dependency-stalled thread blocks resulting in GPU under-
utilization. For example, even if K2:5 and K2:6 have already
completed, K3:8 cannot start until all of K2 has completed.

To alleviate these issues, task-based runtimes allow pro-
grammers to express task execution by dynamically creating
tasks and specifying their dependencies. This allows blocks
to begin executing whenever dependencies are satisfied and

K1 K2 K3 K4

K1:0

K1:1

K1:2

K2:3

K2:4

K2:5

K2:6

K3:7

K3:8

(a) Baseline execution model. In BlockMaestro,
inter-kernel thread block-level data dependencies are
identified and extracted. (K4 tasks are not shown.)

K1 K2 K3 K4

K1:0

K1:1

K1:2

K2:3

K2:4

K2:5

K2:6

K3:7

K3:8

(b) Kernel pre-launching masks kernel launch
overheads. Blocking of dependent thread
blocks are enforced by hardware en masse.

K1 K2 K3 K4

K1:0

K1:1

K1:2

K2:3

K2:4

K2:5

K2:6

K3:7

K3:8

(c) Dynamic inter-kernel thread block-level data
dependency resolution enables overlapped execution
of kernels, achieving benefits of task-based runtimes.

Fig. 2. Baseline execution model suffers from high kernel launch overheads, dependency stalls and resource under-utilization. BlockMaestro’s key insight is
that kernel launch hiding and inter-kernel data dependency resolution can enable the benefits of task-based runtimes without the programmer burden. Kernel
launch overhead is displayed as a vertical bar.

PTX Code

Analysis

CUDA Code

(*.cu)

Inter-Kernel TB

Dependency

Graphs

GPU

GPU

Memory

TB SchedulerPTX

SMs

K
1

K
2

K
3

...

K
1

K
2

K
3

...

Pre-launch kernel

Command Queue

Dependency
Resolution

Fig. 3. Overview of BlockMaestro.

can avoid kernel launch overheads with persistent kernels. In
task-based runtimes, K3:8 would be able to execute immedi-
ately once K2:5 and K2:6 have completed. To achieve the
same goals, BlockMaestro introduces kernel pre-launching and
inter-kernel data dependency resolution to eliminate kernel
launch overheads and to enable overlapped execution of thread
blocks from dependent kernels, respectively.

Figure 2b illustrates kernel pre-launching in order to hide
the overhead of kernel launches. After kernel K1 launches,
BlockMaestro will pre-launch kernel K2. In order to enforce
correctness and resolve data dependencies between K1 and
K2, the thread block scheduler conservatively blocks K2’s
execution until all blocks from K1 has completed. While kernel
launch overheads are eliminated, dependency stalls and under-
utilization of resources can still exist.

To fully achieve the benefits of task-based execution, we fur-
ther identify thread block-level data dependencies that exist be-
tween pairs of dependent kernel (annotated with arrows in the
figure) at kernel-launch-time where just-in-time compilation
occurs from PTX to SASS. Figure 2c illustrates inter-kernel
data dependency resolution which utilizes the thread block-
level data dependency information between dependent kernel
pairs. These data dependencies are enforced by the thread
block scheduler at run-time and are dynamically resolved. This
enables any ready thread blocks to begin execution, regardless
of which kernel they are running in.

Figure 3 shows the system overview of BlockMaestro. Data
dependencies between inter-kernel thread blocks are acquired
from just-in-time analysis at kernel launch time when PTX
code is compiled to SASS assembly. These dependency graphs
are then passed in the the hardware, where the dependencies
are dynamically resolved. BlockMaestro further eliminates

kernel launch overhead by enabling the application to pre-
launch dependent kernels at the same time, without the need
for synchronization. Once the data dependencies of any thread
block from the dependent kernel are met, that TB will also be
eligible to be issued to the execution units.

In the remainder of this section, we will discuss how
BlockMaestro will enable kernel pre-launching and identify,
represent, and enforce inter-kernel data dependencies.

B. Identifying Inter-kernel Dependencies

In many task-based runtimes, task dependencies are spec-
ified directly by the programmer. Dependencies can be con-
veyed at high-level task-based programming models such as
CUDA Graph [43] or AMD ATMI [5], where programmers
define a graph of operations. The key to BlockMaestro pro-
viding programmer-transparent support for the “Thread blocks
as Task” paradigm is to identify inter-kernel thread block-level
data dependencies.

1) Identifying kernel-kernel dependencies:
Data dependencies between kernels occur in data residing

in global memory. Due to the SIMT programming model, the
inputs and outputs of kernels are well-defined. Every region in
global memory used by kernels are allocated with API calls,
such as cudaMalloc in CUDA or hipMalloc in HIP. Load
and store addresses can be identified through static analysis
of the kernel’s PTX or SASS code during the just-in-time
compilation phase at kernel launch time.

If a kernel is to read from or write to a region of allocated
global memory, the base pointer of the memory allocation must
be passed to the kernel launch API. For memory APIs, base
pointers are similarly passed. Writes are cudaMemcpy host-
to-device operations and reads are device-to-host operations.
Therefore, data dependencies between kernels and API calls
can be identified within the command queue in a fairly
straightforward manner.

Handling arbitrary inter-kernel dependencies: BlockMaestro
can support both linear and non-linear patterns; examples
of which are shown in Figure 4(a)-(b). When issued, these
kernel launch commands would be serialized in the command
queue. For example, for the application in Figure 4(b), the
kernel launch order would be K1 to K4. With multiple kernels
being able to run at a time, it’s possible that kernels can

K1

K2

K3

(a) Linear depend-
ency pattern

K2

K4

K3

K1

(b) Non-linear de-
pendency pattern

K1 K2 K3 K4

K1 K2 K3 K4

Without in-order kernel completion

With in-order kernel completion

(c) Dependency tracking re-
quired for (b).

Fig. 4. Example types of inter-kernel dependencies and dependency tracking
required for correctness. By enforcing in-order kernel completion we signif-
icantly reduce the amount of dependency tracking required (solid lines) due
to implicit dependencies (dashed lines).

complete out of order. For example, K2 and K3 can execute
concurrently but K3 can be shorter and finish before K2.
Therefore, to ensure correctness for K4 we would need to
keep track of dependency information for both K2 and K3
(Figure 4(c)(top)). This would require each dependent child
kernel to keep track of dependencies for arbitrary number of
parent kernels. Clearly, this is not scalable to arbitrary inter-
kernel dependency patterns.

To simplify the amount of dependency tracking required,
we enforce in-order kernel completion. As shown in Fig-
ure 4(c)(bottom), even if K3 finishes, we do not mark it
as complete yet or else K4 will be incorrect. Instead, K3
will only be marked complete if K2 is complete. This way,
any dependencies of K4 on kernels prior to K3 are implicit
(dashed lines) and are guaranteed to be satisfied when K3
is complete. This greatly reduces the amount of dependency
tracking required (solid lines) and limits dependency tracking
to consecutive kernels.

In addition, let us hypothetically assume K2 completes be-
fore K1, in-order kernel completion would implicitly enforce
the dependency between K3 and K1. Note that if K1 completes
before K2, K3 can begin execution since there’s no explicit
dependency between K2 and K3, and K1 is implicitly satisfied
if we only allow 2 kernels to concurrently execute. Essentially,
BlockMaestro allows out-of-order execution of kernels, while
enforcing in-order completion of kernels. While we trade-off
some potential kernel overlapping opportunities here, we gain
the benefit of being able to scalably represent inter-kernel
dependency using a series of bipartite graphs between all
kernel pairs.
2) Identifying thread block-level dependencies:

While kernel-level data dependency can enable kernel pre-
launching (as shown in Figure 2b), it does not realize the full
potential of task-based runtimes (as shown in Figure 2c). In
order to achieve task-based runtime benefits, BlockMaestro
needs to avoid dependency-stalled thread blocks by enforcing
thread block-level data dependency. By enforcing inter-kernel
data dependency at the granularity of thread blocks, we can
overlap the execution of thread blocks from dependent kernels.

BlockMaestro performs just-in-time compiler static analysis
(at kernel launch time) to identify read-after-write (RAW)

dependencies in global memory. These RAW dependencies are
enforced at runtime by the thread block scheduler. The key to
identifying RAW dependencies at thread block granularity is
to identify the array indexing that each thread block touches.

In the CUDA programming model, programmers already
specify the mapping of threads to data by calculating in-
dices deriving from indexing variables such as threadIdx,
blockIdx, blockDim, etc. Using a simple vector add
as an example, kernel maps threads to an index in the
array using int i = threadIdx.x + blockDim.x *
blockIdx.x. Then, each thread reads in an element in the
arrays A[i] and B[i], and store the sum into C[i]. Arrays
A[], B[], and C[] are passed into the kernel function after
being allocated with cudaMalloc. Based on the applica-
tion’s data-flow graph, we can identify all loads and stores in
the program to identify the read and write sets, respectively.

To identify thread block-level read and write sets, we iden-
tify the indexing used to access the loads and stores by extract-
ing the index representation as a function of parameters known
at kernel-launch-time, e.g., A + 4 * (threadIdx.x +
blockDim.x * blockIdx.x). Each of these variables
are known at kernel-launch-time, along with their possible
values. Therefore, we can perform value range analysis to
identify the range of array indices that each TB will access
and create a read and write set per TB.
Value range analysis: We implement and perform this value
range analysis for indices in load and store instructions per
thread using the built-in PTX parser in GPGPU-Sim [8] as
shown in Algorithm 1. Note that this algorithm is general
enough that it can also be performed on any compiler frame-
works that supports PTX, such as GPUOcelot [22].

Algorithm 1 Psuedo-code of PTX static analysis
1: Find all global loads/store instructions in kernel K
2: for all I ∈ instructions do
3: S = {src(I)}
4: while S is not empty do
5: Go to the previous instruction j
6: if dst(j) ∈ S then
7: if j is a global load then
8: END (Possible non-static dependency)
9: end if

10: Remove dst(j) from S
11: if src(j) is in local register (e.g. not immediate) then
12: Add src(j) to S
13: end if
14: end if
15: if j is first instruction then
16: Break
17: end if
18: end while

{Value range analysis}
19: for all t ∈ Threads do
20: Add address(I) to load and store sets, LK and SK

21: end for
22: end for
23: Intersect LK with SK−1 to find TB RAW dependencies
24: ...

We perform a backward pass on the CFG representation of
the kernel and identify all global load and stores and track the
origins of their source operands (lines 2-22). If we encounter

a source operand that originates from the result of another
load (an indirect memory access), we terminate and conserva-
tively assume the entire kernel is dependent on the previous
kernel (lines 7-9). Otherwise, we know that all load/store
source operands are derived from known kernel-launch-time
variables. Then given the kernel launch parameters, such as
block and grid sizes, we perform the value range analysis
to identify the read and write sets of each thread block in
the kernel (lines 19-21) and identify dependencies with the
intersect of the read and write sets (line 23) of neighboring
kernels.

To identify the inter-kernel thread block-level data depen-
dency, every kernel call in the command queue is analyzed to
obtain a read and write set. This kernel-launch time analysis
overhead is performed off the critical path and is masked by
the proposed kernel pre-launching technique. By comparing
the read set of later kernels to the write set of earlier kernels,
the intersection of the sets will determine where the RAW data
dependencies exist. We create a dependency graph to represent
data dependency where each node is a thread block and an
edge represents a dependency. Since the nodes can be divided
into two disjoint and independent sets (each belonging to a
separate kernel), our dependency graph is a bipartite graph.
This is illustated in Figure 1.

Why JIT analysis and not compile-time? This analysis can
only be done at kernel-launch-time during just-in-time com-
pilation from PTX to SASS as certain parameters are only
known at kernel-launch time. For example, the grid size
is dependent on the input data set. Similarly, blockDim
(the number of threads in a thread block) and the range of
blockIdx (range determined by the grid size) are also known
at kernel-launch-time. The value range of these variables are
unknown at compile-time (from CUDA to PTX) and therefore
value range analysis cannot be performed to identify thread
block-level data dependency. Furthermore, conducting this at
kernel-launch-time from kernel API calls in the command
queue allows us to dynamically create bipartite dependency
graphs which can allow us to represent larger task graphs in
a decomposed manner.

Limitations and other considerations: In this work, we focus
on static memory analysis, i.e., analysis of memory locations
that are known before runtime. They can include device
variable addresses, immediate values, and kernel parameters.
However, we cannot process global accesses that derive from
another memory value (such as A[B[i]]), pointer chasing,
etc. Such instances are only known at runtime and would
require runtime analysis, which is out of scope of this paper.

Note that even if the application makes use of Unified
Memory, we can still identify read and write sets through
value range analysis. Unified Memory are allocated with
cudaMallocManaged, so we know which global memory
address range needs to be monitored for RAW dependencies.
Within the CUDA kernel, memory access occurs in the same
manner as non-Unified Memory.

cu
d

a
M

allo
c

cu
d

a
M

em
cp

y

K
1

cu
d

a
M

allo
c

cu
d

a
M

em
cp

y

K
2

cu
d

a
M

em
cp

y

cu
d

a
M

allo
c

cu
d

a
M

em
cp

y

K
1

cu
d

a
M

allo
c

cu
d

a
M

em
cp

y

K
2

cu
d

a
M

em
cp

y

cudaMalloc(A)

cudaMemcpy(A, H2D)

K1<<<>>>(A)

cudaMalloc(B)

cudaMemcpy(B, H2D)

K2<<<>>>(A, B)

cudaMemcpy(D2H, B)

(a) Example API calls

cu
d

a
M

allo
c

cu
d

a
M

em
cp

y

K
1

cu
d

a
M

allo
c

cu
d

a
M

em
cp

y

K
2

cu
d

a
M

em
cp

y

cu
d

a
M

allo
c

cu
d

a
M

em
cp

y

K
1

cu
d

a
M

allo
c

cu
d

a
M

em
cp

y

K
2

cu
d

a
M

em
cp

y

cudaMalloc(A)

cudaMemcpy(A, H2D)

K1<<<>>>(A)

cudaMalloc(B)

cudaMemcpy(B, H2D)

K2<<<>>>(A, B)

cudaMemcpy(D2H, B)

(b) Default ordering can prevent kernel
launch hiding due to synchronous API
calls. Arrows depict API dependencies.

cu
d

a
M

allo
c

cu
d

a
M

em
cp

y

K
1

cu
d

a
M

allo
c

cu
d

a
M

em
cp

y

K
2

cu
d

a
M

em
cp

y

cu
d

a
M

allo
c

cu
d

a
M

em
cp

y

K
1

cu
d

a
M

allo
c

cu
d

a
M

em
cp

y

K
2

cu
d

a
M

em
cp

y

(c) Re-ordered API commands to en-
able kernel pre-launching.

Fig. 5. Effect of API ordering in command queue on kernel launch hiding.

C. Enabling Kernel Pre-launching

In this section, we will discuss the changes necessary
to enable kernel pre-launching. Overlapping is achieved by
having future kernels launching before the completion of the
previous kernel. In order to accomplish this, we need to (1)
enable multiple kernels to be simultaneously executed from
a command queue, and (2) prevent certain CUDA API calls
from blocking the command queue or from blocking the issue
of future CUDA APIs in order to allow the command queue
to fill.

To highlight the challenges in enabling kernel launch hiding,
we will refer to Figure 5. In Figure 5a we show an example
trace of CUDA API calls. When the host executes the code and
reaches a CUDA API call, it sends the call along with the nec-
essary data to a command queue (the default CUDA Stream1).
Common CUDA API calls are to allocate memory, transfer
data to/from GPU global memory and host memory, launch
kernels, and device synchronize. Kernel calls are asynchronous
(non-blocking) by default. However, CUDA memory API calls
are synchronous (i.e., host is blocked until the functions return)
and can cause limited opportunities for kernel launch hiding.

Handling blocking APIs: In order to maximize opportunities
for kernel pre-launching, we need to be able to have multiple
kernel commands in the command queue. However, this sce-
nario can be prevented due to the blocking behavior of certain
API calls. In the example shown in Figure 5a, memory opera-
tions such as cudaMalloc and cudaMemcpy are blocking
the host. So as kernel K1 is executing, cudaMalloc(B)
can be processed in parallel (CUDA commands which use
different hardware engines can be executed in parallel), block-
ing the host until it completes. The host will have to wait
until cudaMalloc(B) returns before being able to issue
cudaMemcpy(B) to the command queue. Depending on the
length of K1, this would prevent the opportunity for K1 and
K2 to overlap, as K2 may not be called by the host until after
K1 completes. Therefore, we need to be able to fill multiple

1Note that we may use stream and command queue interchangeably. CUDA
Streams is equivalent to OpenCL command queue and AMD HIP Streams.

kernel commands in the command queues to maximize kernel
pre-launching opportunities.

We can overcome this issue by treating certain blocking
operations as non-blocking. Since BlockMaestro can resolve
dependencies in the hardware, we can shift the burden of
implicit synchronization to the hardware. The only API call
requiring implicit synchronization to be enforced is when there
is a RAW hazard with the host, e.g., a cudaMemcpy call from
device to host. Explicit synchronization API calls, such as
cudaDeviceSynchronize, can also be bypassed as long
as no call after it incurs RAW hazard with the host. As long as
data is not modified on the host, but only in the GPU, we can
enforce correctness of implicit synchronization in the GPU.

Note that asynchronous memory APIs are used by program-
mers when programming with CUDA Streams. If the target
application already utilizes CUDA Streams, then the command
queue is already filled and is not an issue. BlockMaestro
can also seamlessly support pre-launching in CUDA Stream-
based application by overlapping kernel launches within
the same stream. The only other consideration is to han-
dle cudaStreamSynchronize in a similar manner to
cudaDeviceSynchronize for API commands within the
same stream. While BlockMaestro can generalize to support
CUDA Streams, the remainder of the paper focuses on single
default stream applications which experience worse kernel
launch overheads and under-utilization issues.

Programmer-transparent API command reordering: Figure 5b
shows the state of the command queue after all the CUDA
APIs are called. Commands in the queue are implicitly ordered
which can cause orderings that limit the amount of kernel
launch hiding. For example, as K1 is launched and executing,
we cannot proactively pre-launch K2 as the cudaMalloc and
cudaMemcpy commands must complete first. One potential
solution to maximize kernel launch hiding is to identify the
true data dependencies between APIs in the command queue
and reorder the commands to maximize kernel launch hiding.
This is achieved by moving the kernel launches as close as
possible. Figure 5c shows such an order that still satisfies the
data dependencies between API calls. Kernels can then be
launched if memory could be allocated to them. Otherwise,
they will have to wait until resource becomes available.

Enabling multiple kernels to execute from the same command
queue: In the baseline, kernel commands are blocking in the
command queue. That is, only a single kernel from a command
queue can be running at a time. Therefore, one modification
that we require is to let the command queue process multiple
kernel commands at once. This feature is already available in
NVIDIA Hyper-Q which enables multiple kernel commands
from different streams (with our modification, from the same
stream). In our experience, we find that enabling the execution
of only 2-3 kernels per command queue is sufficient to
completely overlap kernel launches.

To enforce correctness and resolve data dependency be-
tween two running kernels in the same command queue, we
rely on the thread block scheduler to enforce the second

dependent kernel to only begin executing after it has detected
that the first kernel has completed execution. This way, the
second kernel’s launch overhead overlaps with the first kernel’s
execution. If the kernels are independent (no data dependency
exist between them), then the independent kernel can begin
executing right away. Otherwise, data dependencies are en-
forced by the hardware. Later in this section, we will discuss
in detail how the thread block scheduler can enforce inter-
kernel data dependencies. Note that all thread blocks in the
current kernel can be executed in an out-of-order fashion.
However, BlockMaestro enforces the completion of the parent
TBs before starting their child TBs from the next kernel.

D. Enforcing Inter-kernel Dependencies

Inter-kernel dependency is enforced using a dependency list
representing the bipartite dependency graph. In BlockMaestro,
the dependent kernel owns the dependency list. We use this
information in the hardware to enforce inter-kernel depen-
dency through the use of a Dependency List Buffer and a
Parent Counter Buffer. We will first illustrate in Figure 6 how
BlockMaestro uses these structures to enforce dependencies
and then detail architectural support. Recall that we only need
to keep track of dependencies between consecutive launched
kernels. Thus we illustrate using two kernels and then will
discuss how to generalize to support multiple pre-launched
kernels.

Let us assume we have a GPU that can execute 4 TBs
at once. The dependency list stores the bipartite dependency
graph which is indexed by the thread block ID of a parent
kernel (K1) and contains a list of dependent child kernel (K2).
For example in (a), TB0 of K1 is a dependee of TB0 and
TB1 of K2. The parent count table keeps track of how many
pending dependencies are outstanding for the child kernel. For
example, TB1 of K2 is dependent on two thread blocks in the
parent kernel.

The initial state of the example is shown in (a) with K1
launched and K2 pre-launched. K1 is the first kernel, and so
it has no dependencies. Thus, the device can start scheduling
TBs 0-3 as shown in (b). After TB0 finishes, the remaining
TB from K1 starts. At the same time, children of TB0 are read
from the dependency list (TB0 and TB1 from K2), and their
respective parent counter decrements, making TB0 from K2
ready to execute once there are available resources in the SM.
Soon after, TBs 1-3 from K1 also finish, allowing TBs 1 and
2 from K2 to be ready for scheduling (c).

When TB 4 from K1 finishes (d), K1 is marked as complete,
K2 is now the designated parent kernel, and we shift our atten-
tion to the next pre-launched kernel K3. In (e), we now show
the dependency list of K3 which specifies the dependencies in
K2 and the parent counts of pending dependencies for K3. As
the TBs of K2 continue executing, we follow the same scheme
as in parts (b)-(d) where K3 will begin executing (f).
1) Architectural Support:

Figure 7 depicts the proposed supporting hardware for
the TB scheduler. When the device receives a kernel from
the host, the dependency list and initial parent counters are

K1

TB0

TB2

TB3

TB1

K2

TB0

TB2

TB1

TB4

TB3

TB5

TB4

Active

TB

Active

TB 0 10

K2 Dependency

List

 1 21

ID Child ID

 2 32

 3 43

 4 54

10

K2 Parent

Counts

21

ID

22

23

24

15

(a) Initial state; K1 is ready to execute on GPU.

K1

TB0

TB2

TB3

TB1

K2

TB0

TB2

TB1

TB4

TB3

TB5

TB4

0

1

2

3

 0 10

 1 21

ID Child ID

 2 32

 3 43

 4 54

10

21

ID

22

23

24

15

Active

TB

Active

TB

K2 Dependency

List

K2 Parent

Counts

(b) First TBs from K1 are scheduled.

Active

TB

Active

TB

K1

TB0

TB2

TB3

TB1

K2

TB0

TB2

TB1

TB4

TB3

TB5

TB4

4

0

1

2

 0 10

 1 21

ID Child ID

 2 32

 3 43

 4 54

00

01

ID

02

03

14

15

K2 Dependency

List

K2 Parent

Counts

(c) First TBs from K1 finish, resolving the
dependencies of their respective TBs from K2,
allowing them to run.

Active

TB

Active

TB

K1

TB0

TB2

TB3

TB1

K2

TB0

TB2

TB1

TB4

TB3

TB5

TB4

3

0

1

2

 0 10

 1 21

ID Child ID

 2 32

 3 43

 4 54

00

01

ID

02

03

04

05

K2 Dependency

List

K2 Parent

Counts

(d) K1 is complete. It can now be replaced by
the kernel after K2. Other TBs from K2 can
now run. Parent count is invalidated.

Active

TB

Active

TB

K2 K3

TB0

TB2

TB1

TB3

TB5

TB4

3

4

1

2

TB0

TB2

TB1

TB3

TB5

TB4

 0 10

 0 11

ID Child ID

 2 32

 2 33

 4 54

 4 55

10

11

ID

22

23

24

25

K3 Dependency

List

K3 Parent

Counts

(e) K3 has launched and its dependency list is
read from the memory. TB 0 from K2 has fin-
ished. Thus its children’s parent counts should
be decremented in the TB scheduler.

Active

TB

Active

TB

K2 K3

TB0

TB2

TB1

TB3

TB5

TB4

1

4

5

0

TB0

TB2

TB1

TB3

TB5

TB4

 0 10

 0 11

ID Child ID

 2 32

 2 33

 4 54

 4 55

00

01

ID

12

13

24

15

K3 Dependency

List

K3 Parent

Counts

(f) More TBs from K2 finish, resolving the
dependencies of their child TBs from K3. First
K3 TBs begin execution.

Fig. 6. TB scheduling example in BlockMaestro. Inter-kernel thread block-level dependencies are maintained using a dependency list and parent counter.

Global Memory

TB Scheduler

Dependency

List Buffer

Parent Counter

Buffer

Issue

TB
.

.

.

.

.

.

S
c
h
ed

u
lin

g

P
o

licy

D
ep

en
d
en

cy

R
eso

lu
tio

n

Encoding

Policy

ID ID #ParentsChild TB IDs

K1

D
ep

en
d

en
cy

 L
ist

P
a
re

n
t C

o
u

n
ts

K1

D
ep

en
d

en
cy

 L
ist

P
a
re

n
t C

o
u

n
ts

K2

D
ep

en
d

en
cy

 L
ist

P
a
re

n
t C

o
u

n
ts

K2

D
ep

en
d

en
cy

 L
ist

P
a
re

n
t C

o
u

n
ts

...

SMs

SM

SM

SM

SM

.

.

.

SMs

SM

SM

SM

SM

.

.

.

Fig. 7. Supporting TB scheduler architecture.

stored in global memory. Thus, for every (pre-)launched kernel
the GPU needs to keep track of the dependency list base
address and parent counters base address in global memory.
To minimize the amount of global memory access, we include
a Dependency List Buffer and Parent Counter Buffer in the
thread block scheduler. The dependency list buffer keeps track
of dependencies of actively executing thread blocks and the
parent counter buffer keeps track of child thread blocks’
pending unresolved dependencies.

When a thread block is scheduled for execution the thread
block’s entry in the dependency list is buffered in the de-
pendency list buffer. Then the entry is read to identify the
child thread blocks. If an entry does not already exist in the

parent counter buffer, we allocate an entry and fetch the child
thread block’s parent counter value. Since the information in
this dependency list and parent counter entry is not needed
until the thread block finishes execution, this buffering process
is off the critical path.

When a TB completes, we identify every child TB ID with
the dependency list buffer and index into the parent counter
buffer to decrement the parent counts. When a parent count
hits 0, the corresponding child TB is now ready for execution.
We deallocate an entry in the dependency list buffer when a
parent TB completes and we delallocate an entry in the parent
counter buffer when that child TB is selected for execution.

Resolving dependencies of multiple kernels: This design is
easily scalable to support resolving dependencies of multiple
running (pre-)launched kernel execution by simply appending
bits to the thread block ID to represent the relative kernel
IDs. For example, in order to resolve the dependency of
4 kernels, we can append 2 bits to the thread block ID
as a kernel identifier. This kernel identifier is incremented
whenever a new kernel is launched and wraps around to 0
when saturated. Since we only need to track dependencies
between neighboring kernels, the kernel identifier is essentially
the least significant 2 bits of the kernel ID.

Scheduling policies: BlockMaestro can support several
scheduling policies across kernel TBs. By default, BlockMae-
stro gives more priority to the TBs in the producing kernel.
TBs in the consuming kernel will not be scheduled until all
producing kernel’s TBs has been scheduled. It is also possible
to give priority to the TBs from the consuming kernel. This
will enable more opportunity to concurrently execute depen-
dent kernels and improve utilization by essentially allowing
more TBs to “run-ahead”.

Kp

TB0

TB2

TB3

TB1

Kc

TB0

TB2

TB3

TB1

(a) Fully connected

Kp

TB0

TB2

TB3

TB1

Kc
TB0

TB3

TB4

TB1

TB5

TB2

(b) N-group fully connected

Kp

TB0

TB2

TB3

TB1

Kc

TB0

TB2

TB3

TB1

(c) 1-to-1

Kp

TB0

TB1

Kc

TB0

TB2

TB3

TB1

(d) 1-to-n

Kp

TB0

TB2

TB3

TB1

Kc

TB0

TB1

(e) n-to-1

Kp

TB0

TB2

TB3

TB1

Kc

TB0

TB2

TB1

(f) Overlapped

Fig. 8. Examples of common dependency patterns between TBs from adjacent kernels

Note that these policies does not face any deadlock issues
for any producer kernels under synchronization events. For
example, the producing kernel can be deadlocked if some TBs
are waiting on a barrier but other TBs cannot be scheduled
since the consuming kernel is taking up resources and starving
the producer kernel. This scenario does not occur since we will
never fully starve a producer kernel to the point of deadlock. In
the worse case scenario, eventually the consumer kernel TBs
will face unmet dependencies which will allow the producer
kernel to schedule, thus avoiding any permanent deadlock.

E. Representing and Storing Inter-kernel Dependencies

We utilize a buffer in the TB scheduler to store the de-
pendency list of the parent kernel. To reduce the amount of
storage, we can take advantage of the dependency patterns
among the kernels themselves to encode them. These patterns
are rarely arbitrary, since the code is usually written to globally
load and store the data using a large number of threads,
e.g., each thread loading a block. Therefore, by analyzing the
pattern, the graph can be stored on the device in an encoded
fashion, which can greatly reduce the memory usage.

TABLE I
HARDWARE OVERHEAD W.R.T. DEPENDENCY PATTERN BETWEEN K1 OF

SIZE N AND K2 OF SIZE M THREAD BLOCKS.

P# Pattern Overhead
(1) Fully connected O(1) (O(MN) without encoding)
(2) n-group fully connected O(M +N)
(3) 1-to-1 (M = N) O(N)
(4) 1-to-n O(M +N)
(5) n-to-1 O(N)
(6) Overlapped O(N +M.degmax)
(7) Independent O(1)

Table I displays the additional memory overhead that Block-
Maestro would utilize for a graph with N parent TBs and
M child TBs on the hardware. Even though it can be more
difficult for a random dependency graph, the overhead can
be drastically reduced by detecting specific patterns that can
usually occur among the kernels (some shown in Figure 8)
and using encoding to reduce the requirements. For example,
for a fully connected pattern, a single bit is enough to signal
the GPU to simply prevent the consuming kernel from running
until the producing kernel is finished. For the n-group case,
TBs parenting the same child TBs could be encoded to be
grouped together in the memory as well, all TBs in the same

group referring to one location containing the child TB group,
thus O(M+N). For 1-to-n, every TB from K2 (with M TBs)
is mapped to a single parent TB, hence O(M). In 1-to-n, each
parent TB has exclusive child TBs, i.e., no child TB is shared
between two parents. In the overlapped pattern, parent TBs
can share multiple child TBs. Therefore, the overhead will be
O(N) plus O(M) times the maximum degree of a child TB.
In addition, if the dependency resolution yields little benefits
for the execution speedup, e.g., too large a dependency degree,
the device can ignore the fine-grained dependency resolution
and treat the kernels as if they are fully connected (as it is
shown in Figure 12).

TABLE II
LIST OF BENCHMARKS USED, NUMBER OF KERNELS, AND TYPE OF

DEPENDENCY PATTERN EXHIBITED (SEE TABLE I).

Name Description # Kernels P#
3MM [25] 3 Matrix Multiplications 3 (2,7)
AlexNet [34] AlexNet network 22 (1,3,4)

BICG [25] BiCG Sub Kernel of
BiCGStab Linear Solver 2 (7)

FDTD-2D [25] 2D Finite Different
Time Domain 24 (5,7)

FFT [18] Fast Fourier Transform 60 (3,5,7)
GAUSSIAN [12] Gaussian Elimination 510 (4,5)

GRAMSCHM [25] Gram-Schmidt
Decomposition 192 (1,4,5)

HS [12] Hotspot 10 (6)
LUD [12] LU Decomposition 46 (3,4,5)

MVT [25] Matrix Vector
Product and Transpose 2 (7)

NW [12] Needleman-Wunsch 255 (4,5)
PATH [12] Path Finder 5 (6)

IV. EVALUATION

A. Methodology and benchmarks

We use a modified version of GPGPU-Sim v3.2.2 [8] as
our baseline, with a Titan X Pascal-like configuration with
28 SMs, each able to run up to 32 TBs at once, though
BlockMaestro should generalize to any SIMT architecture.
Greedy-then-oldest (GTO) warp scheduling policy is used
[49]. For kernel launch overhead calculations, we have used
the average baseline launch overhead of 5µs from [27]. As
shown in Table II, we evaluate against various applications
from Rodinia [12], PolyBench [25], SHOC [18], and Tango
[34] benchmark suites, which cover a wide-range of multi-
kernel applications from different domains.

0.5

1

1.5

2

2.5

3

3.5

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

Cons. Priority (4) Cons. Priority (3) Cons. Priority (2) Prod. Priority

Kernel Pre-launching Baseline (Ideal) Baseline

Fig. 9. Normalized speedup w.r.t. baseline.

B. Results

Speedup: Figure 9 shows the amount of speedup achieved by
BlockMaestro with respect to the baseline. For reference, we
have included the ideal baseline case with no kernel launch
overheads (the bar on the right of each stacked bar). Kernel
Pre-launching uses no synchronization APIs, but enforces the
dependency by not allowing any consumer kernel TBs to
schedule until all of the producer kernel TBs have completed.
In addition, there is Producer Priority, which adds the fine-
grain dependency resolution and gives scheduling priority
to producer kernel’s TBs. We have also included Consumer
Priority which allows 2, 3, and 4 concurrently running kernels
corresponding to 1, 2, and 3 pre-launched kernels, respectively.
This consumer priority scheme prioritizes the consumer ker-
nel’s TB for scheduling.

It can be seen that increasing the number of pre-launched
kernels can increases the geometric mean speedup to 80.28%.
However, we observe diminishing returns with more than 3
pre-launched kernels. This behavior can be best explained by
the degree of TB data dependencies that exist between kernels.
Workloads that most benefit from more pre-launched kernels
require significant number of kernels in an application and
with less connected data dependencies. For example, AlexNet
has significant fully-connected dependencies while LUD has
only 1-to-1/1-to-n/n-to-1 dependencies which are amenable to
TBs running ahead.

Certain applications, such as GAUSSIAN and GRAM-
SCHM, experience significant speedup from just kernel pre-
launching (and no thread block-level dependency resolution).
These workloads tend to have large number of kernels, each
of which finishes fast. Therefore, kernel launch overhead is
the major bottleneck alleviated.

Other benchmarks, such as 3MM, BICG and FDTD, gained
most of their benefit from from fine-grain dependency reso-
lution with simple producer priority scheduling. These work-
loads tend to have data dependencies that are easier to satisfy
and captures more benefit with only two kernels active.
Sometimes their kernels are independent and able to run in
parallel. Therefore more TBs can be ready to execute and
advance the application’s progress.
Utilization: This increase in utilization can also be seen in Fig-
ure 10 which displays the increase in normalized average TB
concurrency with respect to the baseline. Workloads which are

0.6
0.8

1
1.2

1.4
1.6

1.8
2

2.2
2.4

N
o
rm

al
iz

ed
 A

v
g

T
B

 C
o
nc

ur
re

nc
y

Baseline BlockMaestro

Fig. 10. Normalized average TB concurrency w.r.t. baseline.

more compute-intensive with kernels consisting of hundreds
or thousands of thread blocks, such as AlexNet, tend to suffer
less from the overheads of kernel launches. Therefore, these
workloads benefit less from kernel pre-launching alone but
still sees an increase in TB concurrency due to fine-grain TB
dependency resolution. We still observe that AlexNet achieve
speedup of 6.9%. It can be seen that more number of kernels
along with simpler dependency patterns can produce more
opportunities for overlapped kernel execution and utilizing the
resources on the device more efficiently.

Figure 8 showcases various examples of basic patterns in
data dependency of TBs from the child kernel Kc on those
from its parent kernel Kp, which can be extracted from the
PTX code. As the dependency pattern gets more complicated,
it becomes more difficult to take advantage of. The fully
connected pattern in Figure 8a is the worst-case scenario and is
functionally the same as a synchronization barrier between the
kernels. Therefore, the opportunity to speed up the application
via execution overlapping ends with kernel launch overhead
hiding. However, simpler patterns offer a greater opportunity,
since after the execution of each TB in the producing kernel,
TBs from the consuming kernel become ready for execution,
which means more efficient utilization of the device.

Dependency Stall Distribution: Figure 11 displays a distri-
bution of the amount of dependency stalling each TB in an
application is going through during the execution. Recall that
dependency stalled thread blocks are dependent thread blocks
that has dependencies that are satisfied but cannot execute yet
due to its kernel not yet started. The box plot borders designate
the first and third quartiles of the distribution, with the line
in the box representing the median. In addition, the values
are normalized to each TB’s execution time. For example,
a value of 2 for a TB means that that TB has waited for
double the amount of time it would spend executing on the
GPU. As we can see, BlockMaestro can visibly decrease the
amount of dependency stalling for most of the TBs in the
applications. However, in some cases where the GPU capacity
for TB execution is full, some of the remaining TBs in a
dependent kernel will have to wait more than their peers to
be run, increasing their stalling, as is shown in the case of
AlexNet. Also, note that the two kernels in BICG and MVT
can run in parallel in BlockMaestro, hence their dramatic
stall reduction. These workloads are also reflective of CUDA

Baseline BlockMaestro
N

o
rm

a
li

ze
d

 D
ep

en
d

en
cy

 S
ta

ll
in

g
 T

im
e

(w
.r

.t
.
T

B
 e

x
ec

u
ti

o
n

 t
im

e)

Fig. 11. Dependency stall distribution normalized to TB execution time.

Sterams benefits since independent kernels that can concur-
rently execute exists. However, CUDA Streams will not be
able to be used with concurrently executing non-independent
kernels. These results demonstrate that BlockMaestro can gain
the benefit of executing independent concurrent kernels across
streams automatically, while also extracting benefits for more
complex dependency patterns.

C. Overheads

Inter-connectivity Analysis: In Figure 12, we demonstrate the
effect of the degree of dependency that exist between inter-
kernel thread blocks and kernel size on the speedup of a
microbenchmark based on VectorAdd with two equal-size
kernels. In this application, there is a simple 1-to-1 depen-
dency pattern between the two kernels by default. Each line
represents the workload size (number of TBs in one kernel).
During each workload, we increase each TB’s dependency
degree by artificially introducing dependencies between the
kernels in the form of an n-group fully connected pattern. For
example, a degree of 4 signifies that the first 4 TBs from K1
are dependent on the first 4 TBs from K2, etc., resulting in a
4-to-1 dependency pattern.

1

1.1

1.2

1.3

1 2 4 8 16 32 64 128 256 512 1024

S
p
ee

d
up

Degree of dependency per TB

1024 TBs 512 TBs 256 TBs 128 TBs 64 TBs

Fig. 12. Interconnectivity analysis for BlockMaestro. The x-axis shows the
size of each TB’s dependency group.

It can be seen that the benefits we can get from dependency
resolution begin to quickly deteriorate once the average depen-
dency degree passes a certain threshold, in our case deg = 32.
After this point, the speedup benefits reflect that of a fully-
connected dependency graph.

In addition, the speedup we get even before this threshold
decreases as the number of TBs in the kernels grow and ceases
to exist by the time the workload size is 2048. With more TBs

running in a kernel, the most resources a kernel require and
limits the opportunity for pre-launched kernels to run-ahead.
We leverage our insights on how the inter-connectivity of the
dependency graph to minimize hardware overheads.

Area overhead: BlockMaestro mainly introduces a dependency
list buffer and a parent counter buffer. Since the dependency
list buffers actively running TBs, we require 28 × 32 = 896
entries. We similarly set the number of parent count buffer
entries to the same. For each dependency list buffer entry, we
choose to store 4 child TBs per entry. We aggressively choose
a narrower entry since most workloads can be described by a
dependency pattern. Thus, the encoding can derive child TB
IDs. For the rarer scenario where we cannot encode, we will
utilize the 4 child TBs per entry. If we require a wider entry
(as it exist in global memory) we can simply split the wider
entry across multiple entries in the dependency list buffer.

Each index into the dependency list buffer and parent
counter buffer (representing the TB ID) is 32 bits + 2 bits for
kernel identification. Each child TB ID in the dependency list
buffer is 32 bits since kernel identification can be computed.
Since we see diminishing return with greater levels of inter-
connectivity (greater than 64-to-1), we use 6 bits for the parent
counter. Anything higher and we conservatively encode to
fully connected without much loss to speedup. In total, we
require a storage overhead of about 22KB, in addition to
control logic.

Memory Request Overhead: Figure 13 shows the impact of
BlockMaestro on the memory requests. Buffering the depen-
dent list information from the memory can incur a request
overhead in the order of O(V). As it is seen, BlockMaestro’s
average memory request overhead is only about 1.36%.

0
1
2
3
4
5
6
7
8
9

M
em

o
ry

 R
eq

u
es

t O
v

er
h

ea
d

(%

)

Fig. 13. Memory request overhead for BlockMaestro.

Bipartite Dependency Graph Storage Overhead: Table III
displays the amount of storage used for the entire run of
each application normalized with respect to the case where
no encoding is used, i.e., plain storage. As it is observed, the
average storage is reduced by 34.7%. (Note that BICG and
MVT are excluded here since their kernels are independent
and therefore there is no memory storage used for them even
without encoding.)

TABLE III
NORMALIZED TOTAL STORAGE OF BIPARTITE DEPENDENCY GRAPHS FOR

THE ENTIRE APPLICATION RUN W.R.T. PLAIN STORAGE.

Storage Storage
3MM 0.210 AlexNet 0.012
BICG - FDTD-2D 1
FFT 1 GAUSSIAN 1.77E-04

GRAMSCHM 0.375 HS 1
LUD 0.938 MVT -
NW 1 PATH 1

Average 0.653

D. Comparative Results

Comparison to Task-based Execution Models and Dynamic
Parallelism: Figure 14 showcases a comparison with CUDA
Dynamic Parallelism (CDP) [42], a “Tasks as Kernels” exe-
cution model, and Wireframe [4], a “Tasks as TBs” execution
model. Wireframe requires the programmer to specify task
dependencies using a proprietary API and relies on hard-
ware dependency resolution. Essentially, Wireframe represents
multi-kernel workloads into a single mega-kernel with tasks
mapped to a TB. CDP represents each task as a device-side
kernel launch, avoiding much of the overhead of host-side
kernel launches. For a direct comparison with prior works,
we have used the benchmarks in [4]; six applications with
wavefront dependency pattern of 4K tasks. In other words,
each kernel has an overlapped dependency pattern with its
predecessor, and the number of TBs gradually grows until the
middle of the dependency graph, where it starts to decline.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

BlockMaestro (w/Cons. priority) BlockMaestro (w/Prod. priority)

Baseline (Wireframe) Baseline (CDP)

Fig. 14. Comparison with existing “Task as Kernel” (CDP) and “Task as
TBs” (Wireframe [4]) task-based execution models.

The widely used CDP kernel launch latency model [53] is
based on Kepler and estimates a CDP kernel launch overhead
of 20µs, significantly greater than modern host-side kernel
launch times (5µs) [27]. Therefore, we model CDP’s kernel

launch latency as 3µs by removing the kernel launch API call
overhead (2µs) [27] from the host-side kernel launch time.

Figure 14 shows the normalized speedup of our comparison
normalized to CDP. BlockMaestro with producer priority
achieves only 5.8% speedup. Wireframe achieves a geomean
speedup of 36.8% due to its ability for tasks to run-ahead
up to three waves (levels of dependencies). This enables
more tasks to run and utilize the GPU. To that end, we
evaluate BlockMaestro with consumer priority to enable tasks
to run-ahead. With this, we observe speedup of 2x. We found
that Wireframe’s reliance on size-constrained hardware task
management buffers (i.e., pending update buffers) can actually
limit the amount of tasks that can run. Since BlockMaestro’s
dependency resolution can update task states stored in global
memory, our execution is not constrained to increase GPU
utilization, but at the cost of slightly higher memory traffic
as shown in Figure 13. This successfully demonstrates the
benefits that BlockMaestro is able to achieve the benefits of
task-based execution models without programmer intervention.

V. RELATED WORK

Task Dependency: CUDA Dynamic Parallelism [42] en-
ables device-side kernel launches to support dynamic kernel
launches. This amortizes kernel launch overheads and allows
tasks to dynamically spawn on the GPU. However, there are
significant drawbacks such as limited levels of recursion [4].
Since CUDA 10, CUDA Graphs [43] allows the user to
define a dependency graph between different kernels, perform
optimizations on the whole graph during its instantiation, and
execute it many times. CUDA Graphs can reduce the kernel
launch overhead. However, it still does not address the GPU
under-utilization during the execution of dependent kernels.

AMD has also added support the expression of dependen-
cies among GPU “task groups” for years [5]. The authors in
[46] use an asynchronous task-based paradigm to express three
well-known applications as directed acyclic graphs (DAG) [15]
on the Heterogeneous System Architecture (HSA) [23]. In
[47], the same authors note the problem of queue oversub-
scription from parallel tasks, and propose a mechanism to
prioritize the critical path in the task graph. In our work, the
priority is to finish the TBs from the producer kernel first in
a step to potentially add more consumer kernel TBs to the
ready TB pool. Adaptive Task Aggregation (ATA) [26] has
been proposed as a software solution to reduce the overhead
of irregular applications, specifically sparse solvers, through
fine-grain task scheduling. The tasks can be assigned to a
compute unit even before their parent tasks are complete,
hence avoiding the launch overhead.

Task Scheduling: There have been various works on GPU
task scheduling. The authors in [4] introduce Wireframe, a
hybrid solution for data-dependent workloads which handles
TB scheduling in the hardware and eliminates the need
for in-kernel synchronizations. However, there is significant
programmer burden, and it is designed with single-kernel
applications in mind. Juggler [10] employs a software-based

runtime using persistent threads (PT) for single-kernel GPU
workloads with data dependencies, trading synchronizations
with scheduling through a DAG. The authors in [38] propose
overlapped kernel execution through a modified host code
paradigm, obtaining the memory access information using
compiler-generated profiler kernels and storing them on the
GPU’s reference count table a TB scheduler with the goal of
maximizing parallelism. In [30], the authors seek to overcome
the memory bottleneck in GPU applications by proposing
a reuse-aware thread block scheduler to exploit data reuse
between the kernels with producer-consumer data dependen-
cies in mind, the majority being dependencies between TBs
with the same ID from the two kernels (“self-dependencies”),
as well as using work stealing to minimize load imbalance.
PAVER [51] presents a hybrid TB scheduling method by
measuring data locality among each kernel’s TBs, scheduling
them based on a heuristic method to reduce cache thrashing,
and performing task stealing to reduce load imbalance towards
the end of each kernel. Note that our work does not target load
imbalance directly. However, by enabling and managing the
scheduling of TBs from an additional kernel, the SMs have
more TBs to run, reducing under-utilization.

VI. CONCLUSION

In this work, we have proposed BlockMaestro, a software-
hardware solution in order to hide the effect of kernel launch
overheads as much as possible and manage the execution of
thread blocks in a more fine-grained manner by tracking their
data dependencies in hardware in order to enforce correctness.
Our solution also increases GPU utilization during a GPU
kernel execution while incurring a small memory overhead.
By using this paradigm, we have observed an average speedup
of 51.76% (up to 2.92x) in various applications.

ACKNOWLEDGMENTS

This work is partly supported by National Science Foun-
dation under Grants CCF-1815643, CNS-1955650 and CNS-
2047521. We would like to thank the anonymous reviewers
for their invaluable comments and suggestions. We also extend
our gratitude to Qiumin Xu for providing their implementation
of Warped-Slicer [56] which was utilized as our baseline for
concurrent kernel execution.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), 2016, pp. 265–283.

[2] M. Abdel-Majeed, D. Wong, and M. Annavaram, “Warped gates: Gating
aware scheduling and power gating for gpgpus,” in 2013 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2013, pp. 111–122.

[3] M. Abdel-Majeed, D. Wong, J. Kuang, and M. Annavaram, “Origami:
Folding warps for energy efficient gpus,” in Proceedings of the 2016
International Conference on Supercomputing, ser. ICS ’16. New York,
NY, USA: Association for Computing Machinery, 2016. [Online].
Available: https://doi.org/10.1145/2925426.2926281

[4] A. Abdolrashidi, D. Tripathy, M. E. Belviranli, L. N. Bhuyan, and
D. Wong, “Wireframe: Supporting data-dependent parallelism through
dependency graph execution in gpus,” in 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 50), 2017, pp.
600–611.

[5] AMD, “Atmi (asynchronous task and memory interface),” https://github.
com/RadeonOpenCompute/atmi, 2016, accessed: 2020-06-11.

[6] H. Asghari Esfeden, F. Khorasani, H. Jeon, D. Wong, and N. Abu-
Ghazaleh, “Corf: Coalescing operand register file for gpus,” in Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM,
2019, pp. 701–714.

[7] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang, “The design of openmp tasks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 3,
pp. 404–418, 2009.

[8] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in 2009
IEEE International Symposium on Performance Analysis of Systems and
Software. IEEE, 2009, pp. 163–174.

[9] M. E. Belviranli, P. Deng, L. N. Bhuyan, R. Gupta, and Q. Zhu,
“Peerwave: Exploiting wavefront parallelism on gpus with peer-sm
synchronization,” in Proceedings of the 29th ACM on International
Conference on Supercomputing, 2015, pp. 25–35.

[10] M. E. Belviranli, S. Lee, J. S. Vetter, and L. N. Bhuyan, “Juggler:
a dependence-aware task-based execution framework for gpus,” in
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. ACM, 2018, pp. 54–67.

[11] S. Chatterjee, M. Grossman, A. Sbı̂rlea, and V. Sarkar, “Dynamic
task parallelism with a gpu work-stealing runtime system,” in Interna-
tional Workshop on Languages and Compilers for Parallel Computing.
Springer, 2011, pp. 203–217.

[12] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. Ieee, 2009, pp. 44–54.

[13] G. Chen and X. Shen, “Free launch: optimizing gpu dynamic kernel
launches through thread reuse,” in Proceedings of the 48th International
Symposium on Microarchitecture, 2015, pp. 407–419.

[14] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[15] N. Christofides, Graph theory: An algorithmic approach (Computer
science and applied mathematics). Academic Press, Inc., 1975.

[16] Cray, “El capitan,” https://www.cray.com/company/customers/lawrence-
livermore-national-lab, 2020, accessed: 2020-04-14.

[17] Cray, “Frontier,” https://www.cray.com/company/customers/oak-ridge-
national-laboratory, 2020, accessed: 2020-04-14.

[18] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous
computing (shoc) benchmark suite,” in Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, 2010,
pp. 63–74.

[19] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202–3216, 2014.

[20] I. El Hajj, J. Gómez-Luna, C. Li, L.-W. Chang, D. Milojicic, and W.-m.
Hwu, “Klap: Kernel launch aggregation and promotion for optimizing
dynamic parallelism,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2016, pp. 1–12.

[21] H. A. Esfeden, A. Abdolrashidi, S. Rahman, D. Wong, and N. Abu-
Ghazaleh, “Bow: Breathing operand windows to exploit bypassing in
gpus,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2020, pp. 996–1008.

[22] N. Farooqui, A. Kerr, G. Diamos, S. Yalamanchili, and K. Schwan,
“A framework for dynamically instrumenting gpu compute applications
within gpu ocelot,” in Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, 2011, pp. 1–9.

[23] H. Foundation, “Hsa platform system architecture specification 1.0 (jan
2015),” http://www.hsafoundation.com/standards/, 2015, accessed: 2020-
08-20.

[24] T. Gautier, J. V. Lima, N. Maillard, and B. Raffin, “Xkaapi: A runtime
system for data-flow task programming on heterogeneous architectures,”
in 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing. IEEE, 2013, pp. 1299–1308.

[25] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a high-level language targeted to gpu codes,” in 2012
Innovative Parallel Computing (InPar). Ieee, 2012, pp. 1–10.

[26] A. E. Helal, A. M. Aji, M. L. Chu, B. M. Beckmann, and W.-c.
Feng, “Adaptive task aggregation for high-performance sparse solvers on
gpus,” in 2019 28th International Conference on Parallel Architectures
and Compilation Techniques (PACT). IEEE, 2019, pp. 324–336.

[27] T. H. Hetherington, M. Lubeznov, D. Shah, and T. M. Aamodt, “Edge:
Event-driven gpu execution,” in 2019 28th International Conference on
Parallel Architectures and Compilation Techniques (PACT). IEEE,
2019, pp. 337–353.

[28] R. D. Hornung and J. A. Keasler, “The raja portability layer: overview
and status,” Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States), Tech. Rep., 2014.

[29] K. Hou, H. Wang, W.-c. Feng, J. S. Vetter, and S. Lee, “Highly efficient
compensation-based parallelism for wavefront loops on gpus,” in 2018
IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2018, pp. 276–285.

[30] M. Huzaifa, J. Alsop, A. Mahmoud, G. Salvador, M. D. Sinclair, and
S. V. Adve, “Inter-kernel reuse-aware thread block scheduling,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 17,
no. 3, pp. 1–27, 2020.

[31] H. Jeon, H. A. Esfeden, N. B. Abu-Ghazaleh, D. Wong, and S. Elango,
“Locality-aware gpu register file,” IEEE Computer Architecture Letters,
vol. 18, no. 2, pp. 153–156, 2019.

[32] S. Karimi-Bidhendi, A. Arafati, A. L. Cheng, Y. Wu, A. Kheradvar, and
H. Jafarkhani, “Fully-automated deep-learning segmentation of pediatric
cardiovascular magnetic resonance of patients with complex congenital
heart diseases,” Journal of Cardiovascular Magnetic Resonance, vol. 22,
no. 1, pp. 1–24, 2020.

[33] S. Karimi-Bidhendi, F. Munshi, and A. Munshi, “Scalable classification
of univariate and multivariate time series,” in 2018 IEEE International
Conference on Big Data (Big Data). IEEE, 2018, pp. 1598–1605.

[34] A. Karki, C. P. Keshava, S. M. Shivakumar, J. Skow, G. M. Hegde,
and H. Jeon, “Tango: A deep neural network benchmark suite for
various accelerators,” in IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE Press, 2019.

[35] A. M. Kaushik, A. M. Aji, M. A. Hassaan, N. Chalmers, N. Wolfe,
S. Moe, S. Puthoor, and B. M. Beckmann, “Optimizing hyperplane
sweep operations using asynchronous multi-grain gpu tasks,” in 2019
IEEE International Symposium on Workload Characterization (IISWC).
IEEE, 2019, pp. 59–69.

[36] F. Khorasani, H. A. Esfeden, N. Abu-Ghazaleh, and V. Sarkar, “In-
register parameter caching for dynamic neural nets with virtual persistent
processor specialization,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2018, pp. 377–389.

[37] F. Khorasani, H. A. Esfeden, A. Farmahini-Farahani, N. Jayasena,
and V. Sarkar, “Regmutex: Inter-warp gpu register time-sharing,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 816–828.

[38] G. Kim, J. Jeong, J. Kim, and M. Stephenson, “Automatically exploiting
implicit pipeline parallelism from multiple dependent kernels for GPUs,”
in Proceedings of the 2016 International Conference on Parallel Archi-
tectures and Compilation, ser. PACT ’16, 2016.

[39] M. LeBeane, B. Potter, A. Pan, A. Dutu, V. Agarwala, W. Lee, D. Majeti,
B. Ghimire, E. Van Tassell, S. Wasmundt et al., “Extended task queuing:
Active messages for heterogeneous systems,” in SC’16: Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2016, pp. 933–944.

[40] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J. Barker,
“Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli, nvswitch and
gpudirect,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 1, pp. 94–110, 2020.

[41] S. Minaee, A. Abdolrashidi, H. Su, M. Bennamoun, and D. Zhang,
“Biometric recognition using deep learning: A survey,” arXiv preprint
arXiv:1912.00271, 2019.

[42] NVIDIA, “Dynamic parallelism in cuda,” http://developer.download.
nvidia.com/assets/cuda/docs/TechBrief Dynamic Parallelism in
CUDA v2.pdf, 2012.

[43] NVIDIA, “Getting started with cuda graphs,” https://devblogs.nvidia.
com/cuda-graphs/, 2018, accessed: 2019-11-17.

[44] NVIDIA, “Nvidia turing gpu architecture,” https://www.nvidia.com/
content/dam/en-zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf, 2018,
accessed: 2019-11-13.

[45] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch,” Computer
software. Vers. 0.3, vol. 1, 2017.

[46] S. Puthoor, A. M. Aji, S. Che, M. Daga, W. Wu, B. M. Beckmann, and
G. Rodgers, “Implementing directed acyclic graphs with the heteroge-
neous system architecture,” in Proceedings of the 9th Annual Workshop
on General Purpose Processing using Graphics Processing Unit, 2016,
pp. 53–62.

[47] S. Puthoor, X. Tang, J. Gross, and B. M. Beckmann, “Oversubscribed
command queues in gpus,” in Proceedings of the 11th Workshop on
General Purpose GPUs, 2018, pp. 50–60.

[48] K. Ranganath, A. Abdolrashidi, S. L. Song, and D. Wong, “Speeding
up collective communications through inter-gpu re-routing,” IEEE Com-
puter Architecture Letters, vol. 18, no. 2, pp. 128–131, 2019.

[49] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-conscious wave-
front scheduling,” in Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Soci-
ety, 2012, pp. 72–83.

[50] R. Stevens, J. Ramprakash, P. Messina, M. Papka, and K. Riley, “Aurora:
Argonne’s next-generation exascale supercomputer,” ANL (Argonne
National Laboratory (ANL), Argonne, IL (United States)), Tech. Rep.,
2019.

[51] D. Tripathy, A. Abdolrashidi, L. N. Bhuyan, L. Zhou, and D. Wong,
“Paver: Locality graph-based thread block scheduling for gpus,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 18,
no. 3, 2021. [Online]. Available: http://dx.doi.org/10.1145/3451164.

[52] D. Tripathy, H. Zamani, D. Sahoo, L. N. Bhuyan, and M. Satpathy,
“Slumber: static-power management for gpgpu register files,” in Pro-
ceedings of the ACM/IEEE International Symposium on Low Power
Electronics and Design, 2020, pp. 109–114.

[53] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “Dynamic thread
block launch: A lightweight execution mechanism to support irregular
applications on gpus,” ACM SIGARCH Computer Architecture News,
vol. 43, no. 3S, pp. 528–540, 2015.

[54] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “Laperm: Locality
aware scheduler for dynamic parallelism on gpus,” in 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2016, pp. 583–595.

[55] D. Wong, N. S. Kim, and M. Annavaram, “Approximating warps
with intra-warp operand value similarity,” in 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2016,
pp. 176–187.

[56] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, “Warped-slicer:
efficient intra-sm slicing through dynamic resource partitioning for
gpu multiprogramming,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2016, pp. 230–
242.

[57] H. Zamani, Y. Liu, D. Tripathy, L. Bhuyan, and Z. Chen, “Greenmm:
energy efficient gpu matrix multiplication through undervolting,” in
Proceedings of the ACM International Conference on Supercomputing,
2019, pp. 308–318.

[58] H. Zamani, D. Tripathy, L. Bhuyan, and Z. Chen, “Saou: safe adaptive
overclocking and undervolting for energy-efficient gpu computing,” in
Proceedings of the ACM/IEEE International Symposium on Low Power
Electronics and Design, 2020, pp. 205–210.

[59] Z. Zheng, C. Oh, J. Zhai, X. Shen, Y. Yi, and W. Chen, “Versapipe: a
versatile programming framework for pipelined computing on gpu,” in
2017 50th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 2017, pp. 587–599.

