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H I G H L I G H T S

• A framework for data center to bid into electricity market and follow regulation signal in real-time.

• A risk-constrained bidding strategy is developed to determine the optimal energy and frequency regulation bids.

• Dummy load is introduced to increase the amount of regulation service provision of data center.

• Bi-linear server power consumption model and rule-based control enable data center to follow regulation signal accurately.

• The proposed regulation service provision framework reduces electricity bill by 12%.
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A B S T R A C T

The rapid adoption of cloud storage and computing services led to unprecedented growth of data centers in the
world. As bulk energy consumers, large-scale data centers in the U.S. rack up billions in electricity costs an-
nually. Fortunately, the operational flexibility of data centers can be leveraged to provide valuable frequency
regulation services in smart grids to mitigate the indeterminacy of the renewable generation resources.
Specifically, this paper aims to leverage computational flexibility provided by servers, such as dynamic voltage
frequency scaling and dummy loads. This paper develops a comprehensive framework for data center’s fre-
quency regulation service provision in both hour-ahead market and real-time operations. A risk constrained
hour-ahead bidding strategy along with a real-time data center power consumption control algorithm are de-
veloped to minimize electricity bills and the total response time of the requests. The introduction of dummy load,
realistic bi-linear server power consumption model, and probabilistic forecast of electricity and frequency reg-
ulation service prices enable the data center to accurately follow frequency regulation signals, while reducing
the financial risks associated with electricity market participation. The simulation results show that the proposed
frequency regulation provision framework results not only in significant cost reduction for data centers, but also
limits degradation in quality of service. Meanwhile, the stability and reliability of a power grid will be improved
by the frequency regulation service provision.

1. Introduction

The emergence of cloud computing services drove the tremendous
growth of data centers in the past ten years. Data centers have become a
significant segment of the U.S. energy consumption. According to a
recent U.S. data center energy usage report [1], around 70 TWh of
electricity was consumed by data centers in 2014 and the annual
shipment of data center servers is expected to grow 3% annually
through 2020. The operational cost is a major component of the total
cost of ownership of a data center. The electricity cost is about 30–50%
of the total operational cost [2]. Therefore, it is imperative to improve

the operations of the data centers to lower the electricity bill.
The power management of data centers has been widely studied

from different aspects. Dynamic voltage and frequency scaling (DVFS)
[3–5], virtual machine migration and auto-scaling [6,7], and geome-
trical load balancing [8] techniques have been widely explored to lower
power consumption in data center servers. To lower power in cooling
systems, both emission-efficient and energy efficient economizers are
developed in [9–12].

Renewable energy is the fastest-growing fuel source of power sys-
tems in the past ten years [13,14]. The intermittency of renewable
generation outputs poses a new set of operational and planning
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challenges to power system operators. In particular, there is an in-
creasing need for high quality frequency regulation services to balance
the supply and demand of electricity in real-time and mitigate the un-
certainties in renewable generation outputs [15]. A major challenge of
automatic generation control (AGC) in fossil-fueled power plants is that
they are not well suited to follow the AGC set points on a second-by-
second basis with very high accuracy.

The use of data centers to provide frequency regulation service has
attracted a great deal of interest recently. Data centers need to parti-
cipate in two electricity market processes to provide frequency reg-
ulation services: the hour-ahead (HA) market bidding process and the
real-time operations. The existing literature can be divided into two
groups based on which market/operation process was considered.

In the first group of literature, the profit maximization problem of
the data center is formulated to determine the optimal bidding strategy
for energy and frequency regulation services. In [16], an optimization-
based profit maximization problem for data centers with quality of
service (QoS) constraint is formulated. The service rate is controlled to
offer load reduction as an ancillary service. In [17], the problem of
leveraging energy storage systems in data centers to provide frequency
regulation service and peak shaving service is studied. However, the
profit maximization problem formulated in existing literature did not
take the uncertainty of energy, frequency regulation service prices, and
data center requests arrival rates into consideration. In addition, the
financial risks associated with participating in the electricity market are
not modeled.

In the second group of literature, the real-time frequency regulation
signal following problem of data centers is investigated. In [18,19], the
DVFS and CPU resource limit techniques are adopted to adjust the
power consumption. Different real-time control policies, such as effi-
ciency-first and priority-first policies, are proposed to follow the fre-
quency regulation signal. Various power states of the servers are con-
sidered in [20,21] to offer additional flexibility for power control,
including active, idle, slow-to-wakeup sleep state, and shut-down
power states. In [22], a stochastic dynamic programming problem is
formulated to find the optimal policy for the frequency regulation
service provision while reducing the quality of service degradation. In
[23,24], battery storage systems are leveraged to provide frequency
regulation services. Peak demand reduction of the data center is also

considered in [23]. In [25,26], both CPU frequency and the charging
schedule of electric vehicles are controlled to follow the frequency
regulation signals in real-time. Our proposed approach does not rely on
batteries in data centers or electric vehicles to follow frequency reg-
ulation. Instead, we rely solely on computational flexibility provided by
computational resources, such as DVFS and server load. A main novel
contribution of this work is to explore the potential of providing ad-
ditional frequency regulation services by introducing dummy com-
puting load. Therefore, our frequency regulation policy can be im-
plemented as simple software runtimes to “reshape” the power
consumption of the server. This approach is complementary to battery-
based approaches, and does not result in battery lifetime issues
common in battery-based frequency regulation approaches.

Another limitation of prior literature is that most of the existing
literature adopted a simplified linear power consumption model for
servers.In our work, we show that simple linear power models do not
allow data centers to accurately follow real-time frequency regulation
signals, potentially resulting in increased electricity bills when pro-
viding frequency regulation services.

In this paper, we propose a comprehensive framework for the fre-
quency regulation provision by data centers, which covers the hour-
ahead market bidding and the real-time signal following problems. A
piece-wise bi-linear energy consumption model of the data center ser-
vers with default deep sleep state policy is first derived based on em-
pirical measurements from real-world tests on servers. Dummy com-
puting loads are introduced to control server power consumption in
addition to the traditional DVFS technique. A neural network-based
probabilistic model of energy and frequency regulation service prices is
developed and embedded into the risk constrained optimization pro-
blem to determine the optimal energy and frequency regulation service
bids for the data center in the hour-ahead market. For real-time op-
erations, a rule-based data center power consumption control algorithm
is developed, which not only enables frequency regulation signal fol-
lowing with high accuracy but also reduces the total response time of
the requests.

The unique contributions of this paper are listed as follows:

• This paper provides a comprehensive framework for a data center to
bid into the hour-ahead electricity market and follow frequency

Nomenclature

α α α α, , ,j j j j
1 2 3 3 coefficients of fitted power curve in j-th range

δrisk threshold of risk constraint
μ μ μ, ,1 2 3 Lagrange multipliers for capacity bidding constraints
C t( )dif expectation of price difference at time t
Bcap bidding capacity for frequency regulation service
B t( )cap bidding capacity for frequency regulation service at time t
C t( )dif price difference between effective electricity price and

regulation service price at time t
Cdif

i price difference of data sample i
C t( )efe effective energy price considering cooling cost at time t
C t( )e electricity price at time t
C t( )reg regulation service price at time t
cap f( )max maximum computing capacity of a single server with fre-

quency f
dpr t( )i ratio of dynamic power consumption to request per second

rate of server i at time t
f t( )i frequency of server i at time t
fmax maximum frequency of server
N total number of servers in the data center
Nd total number of training data samples
P0 deep sleep state idle power consumption of a single server

when utilization rate is 0

P t( )i power consumption of server i at time t
Pbase power consumption base submitted to the hour-ahead

market
P t( )DC total power consumption of data center at time t
P t( )DC

base power consumption base of data center at hour t
PDC

max maximum power consumption of the data center
P t( )DC

min minimum power consumption of the data center at time t
P t( )set power set point for frequency regulation at time t
P t( )uni total power consumption of data center with uniform

routing at time t
r t( ) total number of requests arrive at the data center per

second at time t
r t( )i the number of requests routed to server i per second at

time t
RegD t( ) fast regulation signal at time t
rt t( )i request response time of server i at time t
rt t( )SLA response time limit under service level agreement at time t
score t( ) performance score at time t
u t( )i total utilization rate of server i at time t
u t( )uni utilization rate of each server by uniformly routing the

requests at time t
ud t( )i utilization rate of server i by dummy load at time t
ur t( )i utilization rate of server i by request at time t
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regulation signal in real-time operations.

• A risk-constrained hour-ahead bidding strategy considering un-
certainties of energy and frequency regulation service prices is de-
veloped to determine the optimal energy and frequency regulation
bids by data centers.

• The dummy computing load is introduced for the first time to in-
crease the amount of frequency regulation service provision of the
data center in addition to the DVFS technique.

• A realistic bi-linear server power consumption model and rule-based
data center power consumption control algorithm not only enable
accurate frequency regulation signal following but also limit de-
gradation in QoS.

• The theoretical derivation and simulation results point out that the
profitability of frequency regulation service provision by data center
depends on accurate prediction of the price difference between
frequency regulation service and energy.

• The simulation results show that for a period of 3months, the pro-
posed frequency regulation service provision framework reduces the
electric bill by $21,590 (8.1%) for a data center with 100,000 ser-
vers compared to the power minimization strategy.

The remainder of this paper is organized as follows: Section 2 lays
out the overall framework for the data center to participate in the
electricity market to provide regulation services. Section 3 develops the
energy consumption model of realistic servers with real-world power
measurement data. Section 4 and 5 formulate the optimization problem
of hour-ahead capacity bidding and real-time signal following respec-
tively. A risk-limited bidding strategy and a rule-based signal-following
algorithm are proposed. The numerical simulations with the Wikipedia
requests for workload trace and price data from PJM market are per-
formed in Section 6. Finally, the paper is concluded in Section 7.

2. Overall framework

The overall framework of the frequency regulation service provision
by a data center is depicted in Fig. 1. The overall framework involves
interactions between a transmission system operator (TSO) and a data
center (DC) in two electricity market processes: hour-ahead market and
real-time operations. The details of the frequency regulation service
provision framework is described in the next three subsections. The
proposed framework is applicable to different electricity markets. The
specific implementation of the bidding strategy can be easily adjusted
to different market rules.

2.1. Data center’s participation in electricity market

As shown in Fig. 1, in order to provide frequency regulation ser-
vices, the data center is required to participate in two electricity market
processes: HA market and real-time operations.

In the HA market, the data center will first predict the prices for
energy and frequency regulation services, and the workload of the data
center for the next operating hour. The data center will then determine
the optimal bidding capacity for energy and frequency regulation ser-
vices which maximize its expected net benefits subject to certain risk
limits. After the HA market is cleared by the transmission system op-
erator, the data center will receive the hour-ahead energy schedule, the
award for frequency regulation service, and the cleared prices for en-
ergy and frequency regulation.

In real-time operations, the data center receives the frequency
regulation signals and automatic generation control (AGC) set points
from the transmission system operator every 2 s. The frequency reg-
ulation signals range from −1 to 1. The signals are negative (positive)
when the system requests frequency regulation down (up) services. The
AGC set points specify the amount of load the data center should con-
sume. The AGC set points are equal to the summation of the HA market
energy schedule plus the product of the frequency regulation signals

and frequency regulation service awards. Upon receiving the AGC set
points, the data center adjusts its energy consumption to follow the set
points. Data centers can accurately follow the AGC set points by dy-
namically routing arriving requests to various servers, changing the
operating frequency of CPUs and inserting dummy loads at the server
level.

The physical and contractual constraints of the data center need to
be taken into consideration when participating in the electricity market.
First, the bidding capacity for energy Pbase and frequency regulation
service Bcap should be determined in such a way that the maximum and
minimum power consumption limits Pmax and Pmin of the data center will
not be violated. If the submitted bids are accepted, then in real-time
operations the AGC set points for the data center ranges from

−P Bbase cap to +P Bbase cap. The data center needs to make sure
+ ⩽P B Pbase cap max and − ⩾P B Pbase cap min. Second, as a cloud computing

service provider, the data center also needs to satisfy the service level
agreement (SLA) and maintain the QoS. Hence, the control of request
routing, CPU frequency, and dummy loads are limited by the SLA re-
quirements.

Finally, note that in electricity markets such as Pennsylvania-New
Jersey-Maryland Interconnection (PJM), there are two types of fre-
quency regulation services, RegA and RegD. The real-time regulation
signal of RegD service is much more volatile than that of RegA service,
and the price of RegD service is higher than that of RegA service. The
data center is capable of controlling its server energy usage in real-time
to follow the volatile RegD service signals. Hence, it is suitable for the
data center to provide such premium frequency regulation services and
receive higher compensation from the electricity market. Fig. 2 shows
an example of daily prices for frequency regulation services and energy
in the PJM market. For about 32% of hours in year 2017 and 2018, the
frequency regulation price of RegD service is higher than the energy
price in PJM market. As the penetration level of renewable energy in-
creases, the demand for frequency regulation service will rise as well.
This will further increase the percentage of hours where the frequency
regulation service price is higher than the energy price.

2.2. Transmission system operator

In the hour-ahead market process, the transmission system operator
first receives both energy and frequency regulation service bids from
generators and data centers. It then clears the hour-ahead market to
determine the hour-ahead energy schedule and prices for energy and
frequency regulation services. The objective is to minimize the total
energy and frequency regulation service costs while satisfying the
electric loads [27]. The market clearing results will be sent to data
centers and other market participants. In the real-time operations, the
transmission system operator will first measure area control error and
compute the frequency regulation signals of the system aiming to re-
duce the area control error to zero in a distributed fashion[28]. The
individual generator and data center’s AGC set points will be calculated
based on the frequency regulation signal, hour-ahead energy schedule,
and frequency regulation service awards. The updated AGC set points

Fig. 1. Overall framework of frequency regulation service provision by data
center.
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will be sent to the generators and data centers every 2 s.

2.3. Performance-based compensation

The final compensation for providing frequency regulation services
depends on both the frequency regulation service award amount and
the real-time AGC set point signal following performance. The signal
following performance is quantified by the performance score in PJM
market [29]. It consists of three components: accuracy, delay, and
precision.

The accuracy score is the correlation between the AGC set point
signals and data center’s response. It is calculated over a five-minute
period with 10-s granularity. The calculation is performed repeatedly
with 10-s delays propagated over five minutes, where the best score is
used. The delay score is based on the time delay between the control
signal and the point of the highest correlation. The delay score will be
100% if the best correlation is at 0 or 10-s delay. It decreases as the
delay time increases until the 5-min mark. The precision score is cal-
culated based the instantaneous error between the control signal and
the regulating unit’s response. The final performance score is the
average of the three components.

3. Energy model of server

To build an energy model of a server, we empirically profiled a
server running CentOS 7 with 32 Intel Xeon E5 cores across different
working frequencies between 1.2 GHz and 2.1 GHz (maximum fre-
quency without turbo-boosting) with the default C6 sleep policy. We
focus the energy model on processors because processors are the largest
consumers of power in data centers and have the largest dynamic range
[30]. In addition, it has been widely observed that processor power
consumption can be used as a proxy for whole-server power [30–32].

As a workload, we used the Web Search benchmark from Cloudsuite
[33] with a ramp time and steady state time of 30 s and 250 s respec-
tively. The measurements taken from the tests include the average
power consumption and percentage of idle time. To find the maximum
computing load a server can handle, we gradually increase the number
of clients in the benchmark at every frequency until it fails to satisfy
QoS and pick the greatest value. The idleness and power measurements
are performed using powertop and rapl-read[34] respectively, while the
frequency is scaled using cpufreq drivers.

The percentage of C6 sleep time and CPU power consumption of a
single server with different request rates (per second) are depicted in
Fig. 3. As shown in the figure, the default C6 sleep time percentage
decreases with the increase of request per second (RPS) almost linearly
for each frequency. The C6 sleep time of a server running at maximum
frequency fmax , i.e. 2.1 GHz, reaches zero at 1230 RPS, which is deemed

as the maximum capacity of the server cap f( )max max . Fig. 3 also shows
the maximum capacity of the server under various frequencies cap f( )max
increases approximately linearly with the frequency of the server CPU.

Hence, we can estimate the maximum capacity of the server under
frequency f with:

=cap f
f

f
cap f( ) ( )max

max
max max (1)

In Fig. 3, the circles on the horizontal axis represent the estimated
maximum capacity under different frequencies by scaling capmax with
the above linear equation. The squares on the horizontal axis of the
figure are the approximated maximum capacity by linear extrapolation
with the last 4 points of each curve. The short distances between the
circles and squares show that the linear approximation for the max-
imum server capacity is fairly accurate.

The utilization rate of the server i at time t is defined as the ratio of
the number of requests per second to the maximum server capacity
under a particular frequency:

=ur t r t
cap f t

( ) ( )
( ( ))i

i

max i (2)

The energy consumption model with the default sleep policy is the
baseline considered in this paper. At the server level, the energy con-
sumption can be controlled by adjusting the CPU frequency and in-
troducing the dummy computing load. The dummy load can be trivially
injected by running a process that stresses the CPU with mainly com-
pute instructions, limiting performance interference with other pro-
cesses running in the server. It increases the equivalent utilization rate
and decreases the sleep time percentage. The total equivalent utiliza-
tion rate with the dummy load is

= +u t ur t ud t( ) ( ) ( )i i i (3)

The power consumption of a single server with the default sleep policy
at different frequencies and utilization rates are depicted by the mar-
kers in Fig. 4. The relationship between the power consumption and
utilization rate of the servers can be described by a piece-wise bi-linear
function. Note that the slope of the power curve segment where the
utilization rate is between 0 and 0.1 is larger than that of the segment
where the utilization rate is between 0.1 and 1. It can also be observed
that for a fixed utilization rate, the power consumption increases faster
when the frequency increases from 2.0 GHz to 2.1 GHz than when the
frequency increases from 1.2 GHz to 2.0 GHz.

Therefore, the server power can be approximated as a piece-wise bi-
linear function of frequency and utilization rate as:

= + + +P t α f t u t α u t α f t α( ) ( ) ( ) ( ) ( )i
j

i i
j

i
j

i
j

1 2 3 4 (4)

where the four different ranges of utilization rate and frequency are
defined as follows:

Fig. 2. Prices for frequency regulation services and energy in PJM market.

Fig. 3. C6 sleep time versus request per second rate.
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⎪
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⎪

< = < = < = < =
< = < = < = < =
< = < = < = < =
< = < = < = < =

j

u t f t
u t f t

u t f t
u t f t

1, 0 ( ) 0.1, 1.2 ( ) 2.0
2, 0 ( ) 0.1, 2.0 ( ) 2.1
3, 0.1 ( ) 1, 1.2 ( ) 2.0
4, 0.1 ( ) 1, 2.0 ( ) 2.1

i i

i i

i i

i i (5)

The power consumption curves fitted with least square regression ac-
cording to Eq. (4) are depicted in Fig. 4. As shown in the figure, the
piece-wise bi-linear function is well suited to model the server power
consumption.

This piece-wise bi-linear model is typical of modern processors.
Leakage energy dominates at low utilization levels (below 10%), and
idle power management policies, such as sleep states and circuit-level
power gating, have a profound effect. Furthermore, at 2.1 GHz we ob-
served that power increases at a faster rate. This is also typical of
modern processors that utilize frequency boosting techniques, such as
Intel TurboBoost or AMD Turbo Core [35]. These policies aim to
maximize performance and leverage the processor’s thermal headroom.
Therefore, operating at these frequencies sacrifices energy efficiency for
performance, thus the increase in power consumption rate.

4. Hour-ahead market frequency regulation and energy bidding
strategy for data center

4.1. Problem formulation

In the hour-ahead market, the objective of the data center is to
determine the optimal bidding strategy which maximizes the expected
net earnings for each hour t. The net earnings of the data center can be
calculated as the difference between the revenue received from fre-
quency regulation service provision and the total electricity cost as
shown in Eq. (6):

− +E C t score t B t η C t P tmax [ ( ) ( ) ( ) (1 ) ( ) ( )]reg cap cool e DC
base (6)

where C t( )e and C t( )reg are electricity price and frequency regulation
price for hour t. The cooling cost coefficient, i.e., ratio of cooling power
over server load is denoted by ∈ +η Rcool . The decision variables are the
bidding capacity for frequency regulation service B t( )cap and energy
consumption P t( )DC

base . Note that the data center is assumed to be a price-
taker in the electricity market participation process.

The constraints for the net earnings maximization problem are as
follows:

⩽ −P t P t B t( ) ( ) ( )DC
min

DC
base

cap (7)

+ ⩽B t P t P( ) ( )cap DC
base

DC
max (8)

⩽f C t C t r t B t P t δ( ( ), ( ), ( ), ( ), ( ))risk reg efe cap DC
base

risk (9)

where = +C t η C t( ) (1 ) ( )efe cool e is the effective energy price considering

cooling cost. Eqs. (7) and (8) represent the upper and lower bidding
capacity constraints. Eq. (9) represents the risk limit constraint for the
data center’s bidding strategy, where r t( ) represents the average re-
quest arrival rate during hour t.

If the data center does not provide frequency regulation service,
then its optimal bidding strategy aims at minimizing energy cost.
Hence, the risk of the joint energy and frequency regulation service
bidding strategy can be defined as the expectation of the bidding
strategy loss compared to the power consumption minimization sce-
nario. Note that losses arise in cases when the revenue received from
frequency regulation service provision is less than the increased energy
cost:

∬

∬

= − −

− −

= −
−

f C t C t r t B t P t
Pr C t C t C t score t B t

C t P t C t P t dC t dC t

Pr C t C t C t P t P t
C t score t B t dC t dC t

( ( ), ( ), ( ), ( ), ( ))
( ( ), ( )){[ ( ) ( ) ( )

( ) ( )] ( ( ) ( ))} ( ) ( )

( ( ), ( )){ ( )[ ( ) ( )]
( ) ( ) ( )} ( ) ( )

risk reg efe cap DC
base

V reg efe reg cap

efe DC
base

efe DC
min

reg efe

V reg efe efe DC
base

DC
min

reg cap reg efe (10)

where V is defined as follows:

= − >V C t C t C t P t P t C t score t B t{ ( ), ( ) ( )[ ( ) ( )] ( ) ( ) ( )}reg efe efe DC
base

DC
min

reg cap

(11)

Pr C t C t( ( ), ( ))reg efe denotes the joint probability distribution of fre-
quency regulation service price C t( )reg and effective energy price C t( )efe .

In Eq. (8), PDC
max denotes the maximum power consumption of the

data center, which can be calculated by summing up individual servers’
power consumption at full utilization rate and maximum CPU fre-
quency as = ∑ = ==P P f u( 2.1, 1.0)DC

max
i
N

i1 .
In Eqs. (7) and (10), the minimum power consumption of data

center PDC
min, can be found by solving the following optimization pro-

blem with r t u t( ), ( )i i , and f t( )i as decision variables:

∑=
=

P t P t( ) min ( )DC
min

i

N

i
1 (12)

s.t.

∑ = ⎡

⎣
⎢

⎤

⎦
⎥

=

r t E r t( ) ( )
i

N

i
1 (13)

= + + +P t α f t u t α u t α f t α( ) ( ) ( ) ( ) ( )i
j

i i
j

i
j

i
j

1 2 3 4 (14)

= ⩽u t ur t( ) ( ) 100%i i (15)

=ur t r t
cap f t

( ) ( )
( ( ))i

i

max i (16)

= ⩽rt t f f t u t rt( ) ( ( ), ( ))i rt i i SLA (17)

The objective function (12) aims at minimizing the summation of
the power consumption of each server. Eqs. (13)–(17) represent the
operation constraints of the data center. We assume a homogeneous
computing environment in the data center. Hence, Eq. (13) ensures that
the summation of requests routed to each server should be equal to the
total requests received by the data center. Eq. (14) represents the power
consumption model of each server where only the CPU power is con-
sidered. As shown in Section 3, the power consumption of a server with
the default sleep state policy is a piece-wise bi-linear function of CPU
frequency and utilization rate. Eq. (15) enforces the upper limit of the
CPU utilization rate. Note that in the power consumption minimization
problem, the dummy computing load must be zero. Hence =u t ur t( ) ( )i i .
Eq. (17) represents the service level agreement constraint which sets
upper limits on the response time of the 90th percentile of the requests.
As shown in Fig. 5, the response time is a function of utilization rate.
Hence, we can set an equivalent upper bound on the utilization rate
u t( )i . For example, the utilization rate limit of =rt 115 msSLA at
=f 2.1 GHz is about 0.8. Define u f( )max as the corresponding utilization

Fig. 4. Fitted power consumption curves with default sleep policy.
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limit of the SLA. Although the explicit functional form of the utilization
rate limit is not modeled here, the estimation for the minimum power
consumption PDC

min can still be performed as shown in the Appendix C.

4.2. Problem reformulation

The energy price Ce is rarely negative in practice. In PJM market,
there are only 23 hours in total with negative energy prices during year
2017 and 2018. When the energy price becomes negative, the net
earnings of a data center when providing both frequency regulation and
energy services are greater than when the data center tries to minimize
power consumption. Hence, we only consider the cases when >C 0efe .

The Lagrange function of the optimization problem (6)–(9) is

= − +

+ − + + −

+ −

E C t P t E C t score t B t μ

P t B t P t μ B t P t P t

μ f δ

[ ( )] ( ) [ ( ) ( )] ( )

( ( ) ( ) (( )) ( ( ) (( ) ( ))

( )

efe DC
base

reg cap

DC
min

cap DC
base

cap DC
base

DC
max

risk

1

2

3

L

(18)

where ⩾ ⩾μ μ0, 01 2 , and ⩾μ 03 are the corresponding Lagrange
multipliers. By taking partial derivative of the Lagrange function with
respect to P t( )DC

base , we obtain

∂
∂

= ⎡
⎣⎢

⎤
⎦⎥
− + +

∂
∂P t

E C t μ μ μ
f

P t( )
( )

( )DC
base efe

risk

DC
base1 2 3

L

(19)

As shown in Appendix A, ∂ ∂ ⩾f P t( )/( ( )) 0risk DC
base . Intuitively, the risk of

providing frequency regulation service increases with P t( )DC
base because

the electricity cost increases with P t( )DC
base .

At the optimum point, (19) is equal to zero. Hence, we have

⎡
⎣⎢

⎤
⎦⎥
= − −

∂
∂

>E C t μ μ μ
f

P t
( )

( )
0efe

risk

DC
base1 2 3

(20)

Therefore, at optimal solutions,

> +
∂

∂
⩾μ μ μ

f
P t( )

0risk

DC
base1 2 3 (21)

Hence, the constraint (7) is binding at the optimum point, i.e.,

= +P t B t P t( ) ( ) ( )DC
base

cap DC
min (22)

Therefore, the objective function (6) can be reformulated as:

−
= −

−

E C t score t B t C t P t
E C t score t C t B t

E C t P t

[ ( ) ( ) ( ) ( ) ( )]
[ ( ) ( ) ( )] ( )

[ ( )] ( )

reg cap efe DC
base

reg efe cap

efe DC
min

(23)

Let’s define the price difference C t( )dif as
= −C t C t score t C t( ) ( ) ( ) ( )dif reg efe , and the expectation of C t( )dif as

=C t E C t( ) [ ( )]dif dif . If the estimator of r t( ) is unbiased, then P t( )DC
min

calculated based on r t( ) is also unbiased. Note that the second term on
the right hand side of Eq. (23) is not a function of the decision variable
B t( )cap . Hence, maximizing the objective function (23) is equivalent to
maximizing C t B t( ) ( )dif cap , i.e., the extra benefits of providing frequency
regulation services compared to the minimum power consumption
strategy.

Similarly, by leveraging the equality (22), the risk limit constraint
(9) can be simplified as

∫ ⎜ ⎟− ⎛
⎝

⎞
⎠

⩽
−∞

Pr C t C t B t dC t δ( ) ( ) ( ) ( )dif dif cap dif risk
0

(24)

In summary, the optimization problem (6)–(9) can be reformulated as:

C t B tmax ( ) ( )dif cap (25)

s.t.

∫ ⎜ ⎟− ⎛
⎝

⎞
⎠

⩽
−∞

Pr C t C t B t dC t δ( ) ( ) ( ) ( )dif dif cap dif risk
0

(26)

⩽ ⩽
−

B t
P t P t

0 ( )
( ) ( )

2cap
DC
max

DC
min

(27)

4.3. Solution methodology

In order to solve the optimization problem (25)–(27), the prob-
ability distribution of the price difference Cdif needs to be modeled and
estimated first.

A feed-forward neural network can be trained to estimate the
probability distribution of Cdif based on the observed price differences
and input features X such as the historical prices, load and generation
information. The conditional distribution of price difference given ob-
served features and trained neural network parameters is assumed to be
Gaussian.

=Pr C X W C y X W β( , ) ( ( , ), )dif difN (28)

Where X denotes the input features,W denotes the weights of the neural
network, and β denotes the variance of the Gaussian noise. y X W( , )
denotes the output of the neural network, which is the mean value of
price difference variable which follows the Gaussian distribution.

Given a data set of Nd independent, identically distributed ob-
servations along with corresponding target values for price differences

= …x C i N{( , ), 1, 2 , }i dif
i

d , we can construct the corresponding negative
logarithm of the likelihood function:

∑ − − + ⎛

⎝
⎜

⎞

⎠
⎟

=β
y x W C N

β
N π1

2
( ( , ) )

2
ln 1

2
ln 2

i

N

i dif
i d d

1

2
d

(29)

The weights of the neural network W can be obtained by maximizing
the likelihood or minimizing the sum-of-square error function given by

∑ −
=

y X W C( ( , ) )
i

N

dif
i

1

2
d

(30)

Denote the W obtained by minimizing the sum-of-square error as Wml.
By making the partial derivative of Eq. (29) with respect to β equal to
zero, βml can be obtained as

∑
=

−
=β

y x W C

N

( ( , ) )

ml
i

N

i ml dif
i

d

1

2
d

(31)

After training the neural network and obtaining the network para-
meters Wml and βml, we have =C t y x t W( ) ( ( ), )dif ml , and

=Pr C t x t W C t C t β( ( ) ( ), ) ( ( ) ( ), ).dif ml dif dif mlN (32)

Therefore, the closed form solution of optimization problem (25)–(27)

Fig. 5. 90% pass time versus utilization rate.
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is
When >C t( ) 0dif ,

=
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⎬

⎪
⎪

⎭

⎪
⎪∫

−

−

⎜ ⎟

−∞
−

⎛
⎝

− ⎞
⎠

{B t min( ) ,cap
P t P t

δ

e C t dC t

( ) ( )
2

( ) ( )

DC
max

DC
min

risk

πβml

Cdif t Cdif t

βml dif dif
0 1

2

( ) ( )
2

2
(33)

Otherwise =B t( ) 0cap . Therefore, the actual gain is influenced by the
accuracy of the price difference forecast model as the B t( )cap is de-
termined by Cdif and βml.

Note that to obtain P t( )DC
min in (33), the requests arrival rate needs to

be modeled and estimated. In this paper, we adopt the auto-regressive
integrated moving average (ARIMA) [36] model to approximate the
time series of requests arrival rate.

5. Following real-time frequency regulation signal

5.1. Problem formulation

In the real-time frequency regulation signal following stage, the goal
of the data center is to minimize the total response time of the requests
while following the frequency regulation signals accurately. Therefore,
the task of following real-time frequency regulation signal is equivalent
to solving the following optimization problem:

∑
=

r t rt tmin ( ) ( )
i

N

i i
1 (34)

s.t.

− =P t P t( ) ( ) 0set DC (35)

where ≜ +P t P t B t RegD t( ) ( ) ( ) ( )set DC
base

cap is the AGC set point sent to the
data center by the transmission system operator. P t( )DC

base is the energy
dispatch level of the data center and B t RegD t( ) ( )cap is the amount of
frequency regulation service the data center is required to provide. Note
that RegD t( ) is the frequency regulation signal which ranges from −1
to 1. rt t( )i is the average request response time of server i. The response
time of each request is determined by the utilization rate of each server.
At last, ≜ ∑ =P t P t( ) ( )DC n

N
i1 , where P t( )i can be calculated by Eq. (14).

The decision variables of the optimization problem include CPU fre-
quency (discrete variable) and the dummy load (continuous variable) of
each server.

5.2. Rule-based data center power consumption control algorithm

In order to make online adjustments of total power consumption as
the frequency regulation signal is updated every 2 s, a rule-based con-
trol strategy is proposed.

The uniform server utilization rate at time t is defined by routing
requests evenly to all servers operating with a CPU frequency of 2.1 GHz
as

=
=

u t r t N
cap f

( ) ( )/
( 2.1)uni

max (36)

The total power consumption at time t by uniformly routing requests to
all servers running at 2.1 GHz can be obtained as

∑= ⎛

⎝
⎜ = = ⎞

⎠
⎟P t P f u u t( ) 2.1, ( )uni

i

N

i uni
(37)

In order to accurately follow the frequency regulation signals while
minimizing the total request response time, the operating strategy of

the data center varies according to the AGC set point and total number
of requests received by the data center as follows:

1. ⩾P t P t( ) ( )set uni ;
2. <P t P t( ) ( )set uni and ⩽ × × =r t u N cap f( ) (2.0) ( 2.0)max max ;
3. <P t P t( ) ( )set uni and > × × =r t u N cap f( ) (2.0) ( 2.0)max max .

The operating strategy of the data center under each of the three
cases will be presented in detail.

CASE 1: When ⩾P t P t( ) ( )set uni , the minimum request response time
can be achieved by uniformly routing requests to all the servers and
adding dummy loads until the AGC set point is met. A proof for why the
proposed data center operating strategy achieves minimum request
response time while accurately following the frequency regulation
signal is provided in the Appendix B.

To follow the frequency regulation signals accurately, dummy
computing loads need to be added to increase the server utilization rate.
The amount of dummy load u t( )d needed can be calculated as follows:

= −u t u t u t( ) ( ) ( )d uni (38)

where u t( ) can be found by solving:

∑= ⎛

⎝
⎜ = ⎞

⎠
⎟ = ⎛

⎝
⎜ + + + ⎞

⎠
⎟

=

P t P f u t N α u t α u t α α( ) 2.1, ( ) 2.1 ( ) ( ) 2.1set
i

N

i
j j j j

1
1 2 3 4

(39)

Hence, the closed form solution of u t( ) is as follows:

=
− +

+
u t

P t N α α
N α α

( )
( ) (2.1 )

(2.1 )
set

j j

j j
3 4

1 2 (40)

Where

= ⎧
⎨⎩

< = =
⩾ = =

j
P t N P f u
P t N P f u

2, ( )/ ( 2.1, 0.1)
4, ( )/ ( 2.1, 0.1)

set i

set i (41)

CASE 2: When <P t P t( ) ( )set uni and r
⩽ × × =t u N cap f( ) (2.0) ( 2.0)max max , the data center’s operating

strategy works as follows. Note that in this case the power consumption
needs to be reduced from P t( )uni to P t( )set and the SLA can be satisfied
with all servers running at 2.0 GHz. We will start from the baseline
operating strategy where the requests are uniformly routed to all ser-
vers running at =f 2.1 GHz. Then we select n servers whose requests
are packed to ′n servers running at 2.0 GHz with the maximum utili-
zation rate u (2.0)max which does not violate the SLA. The remaining
− ′n n servers are kept in idle state. By carefully choosing n and ′n , the

data center is capable of closely following the frequency regulation
signals. Although the proposed data center operating strategy increased
the response time for some of requests compared to the uniform routing
benchmark, it minimizes the number of requests with increased re-
sponse time as shown in Appendix D.

The data center control parameters n and ′n can be calculated online
as follows.

The total energy consumption of the data center in CASE 2 include
energy consumption from ′n servers with packed requests, − ′n n ser-
vers in idle, and −N n servers operating under the uniform routing and
the maximum frequency.

∑ ∑ ∑=
⎛

⎝
⎜ = =

⎞

⎠
⎟ + +

⎛

⎝
⎜ =

=
⎞

⎠
⎟

=

′

= ′+ = +
P t P f u u P P f u

u t

( ) 2.0, (2.0) 2.1,

( )

DC
i

n

i max
i n

n

i n

N

i

uni

1 1
0

1

(42)

The number of servers with packed requests, ′n can be expressed as a
function of n:
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′ = ⎡
⎢⎢ =

⎤
⎥⎥
⩽n nr t

u Ncap f
n( )

(2.0) ( 2.0)max max (43)

By setting =P t P t( ) ( )set DC and substituting (43) into (42), we can solve
for n as follows:

=
⎡

⎢
⎢
⎢

− = = ⎧
⎨⎩

= =
=

+ ⎡
⎣⎢

−
=

⎤
⎦⎥

− ⎛

⎝
⎜ = = ⎞

⎠
⎟
⎫
⎬⎭

⎤

⎥
⎥
⎥

n

P t NP f u u
r t P f u u

u Ncap f

r t
u Ncap f

P P f u u

{ ( ) ( 2.1, }/
( ) ( 2.0, (2.0))

(2.0) ( 2.0)

1 ( )
(2.0) ( 2.0)

2.1,

set i uni
i max

max max

max max
i uni0

(44)

′n can then be derived from Eq. (43). As shown in the Lemma III of
Appendix C, by increasing n, the total power consumption can be
continuously reduced from P t( )uni to the power consumption lower
bound in Eq. (C.12) with an error less than the power consumption of
one server. The approximated minimum power consumption is reached
when =n N , i.e. all workload are packed to servers running at 2.0 GHz.

CASE 3: When <P t P t( ) ( )set uni and r
> × × =t u N cap f( ) (2.0) ( 2.0)max max , the data center’s operating

strategy works as follows. The combination of a low power set point
and a large number of requests pushes the utilization rate of the servers
to the upper limit. Note that even by running all servers at 2.0 GHz with
the utilization rate at the upper limit which satisfies the SLA, the data
center can only handle × × =N u cap f(2.0) ( 2.0)max max requests per
second. This is smaller than the number of r t( ) in CASE 3. Therefore,
only n out of a total of N servers can operate at 2.0 GHz with a utili-
zation rate of u (2.0)max . The remaining

− =n r t N u cap f( ( )/ (2.0) ( 2.0))max max workload will be evenly dis-
tributed to the remaining −N n servers operating at a frequency of
2.1 GHz.

The number of servers, n, operating at 2.0 GHz can be calculated
online as follows.

The total energy consumption of the data center in CASE 3 include
energy consumption from n servers at frequency 2.0 GHz and the uti-
lization rate of u (2.0)max , and −N n servers operating at frequency
2.1 GHz with utilization rate of u t( ).

∑ ∑= ⎛

⎝
⎜ = ⎞

⎠
⎟ + ⎛

⎝
⎜ = ⎞

⎠
⎟

= = +

P t P f u P f u t( ) 2.0, (2.0) 2.1, ( )DC
i

n

i max
i n

N

i
1 1 (45)

where

=
− × =

− =
u t

r t n u cap f
N n cap f

( )
( ) (2.0) ( 2.0)

( ) ( 2.1)
max max

max (46)

The utilization rate of the −N n servers operating at 2.1 GHz satisfies
the following relationship:

> >
=

=
>u t u t

u cap f
cap f

( ) ( )
(2.0) ( 2.0)

( 2.1)
0.1uni

max max

max (47)

Therefore, by setting =P t P t( ) ( )set DC and combining Eqs. (45) and (46),
the closed-form solution for n can be derived as:

⎜ ⎟

⎜ ⎟

⎜ ⎟

=
⎢

⎣
⎢
⎢
⎧
⎨⎩

⎛
⎝

+ ⎞
⎠
+

+
=

− ⎫
⎬⎭

⎧
⎨⎩

+ + ⎛
⎝

+ ⎞
⎠

=
=

− ⎛
⎝

= = ⎞
⎠

⎫
⎬⎭

⎥

⎦
⎥
⎥

n

N α α
α α r

cap f
P t

α α α α
u cap f

cap f

P f u u

2.1
(2.1 )

( 2.1)
( )

2.1 2.1
(2.0) ( 2.0)

( 2.1)

2.0, (2.0)

max
set

max max

max

i max

3
4

4
4 1

4
2
4

3
4

4
4

1
4

2
4

(48)

As shown in the Lemma IV of Appendix C, by gradually increasing n,
the total power consumption can be reduced from P t( )uni to the power

consumption lower bound in Eq. (C.18) with an error less than the
power consumption of two servers. The approximated minimum power
consumption is reached when the = − ∗n N n2.1, where ∗n2.1 is defined in
Eq. (C.1).

In summary, the rule-based data center power consumption control
strategy is presented in Algorithm 1.

Algorithm 1. Rule-Based Data Center Power Consumption Control
Strategy

1: Receives data center power set point = +P t P t B t RegD t( ) ( ) ( ) ( )set DC
base

cap .
2: Calculate total server power consumption with uniformly distributed requests at

the highest CPU frequency as = ∑ = =P u t f P f u u t( ( ), ) ( 2.1, ( ))DC uni max i
N

i uni .

3: if ⩾P t P u t f( ) ( ( ), )set DC uni max then
4: Add dummy load evenly to all servers to increase utilization rate as in (38)–(41)
5: else if < =r t Nu cap f( ) (2.0) ( 2.0)max max then
6: Calculate ′n , the number of servers operating at frequency 2.0 GHz and utiliz-

ation rate u (2.0)max , and − ′n n , the number of servers idling, as in (43) and (44).
The remaining servers will be operating at frequency 2.1 GHz and utilization rate
of =u u t( )uni .

7: else
8: Calculate n, the number of servers operating at frequency 2.0 GHz and utilization

rate u (2.0)max as in (48). The rest of the servers are operating at frequency 2.1 -
GHz and utilization rate as in (46).

9: end if

6. Numerical study

6.1. Simulation setup

It is assumed that the data center in the numerical study has
100,000 servers. Given estimates of data center size from 2017 [37]
ranging from 50,000–80,000, we believe that 100,000 servers in a data
center is reasonable to simulate a large data center. The servers are
assumed to have the same power curves as shown in Fig. 4 with power
consumption ranging from 22W to 85W. The maximum capacity of
each server is 1230 requests per second. The SLA specifies that 90% of
the requests will be processed within 115ms. The corresponding limit
on the utilization rate are 0.8 at 2.1 GHz and 0.77 at 2.0 GHz. To simulate
the data center’s workload, we adopted Wikipedia’s access trace from
the online repository [38]. The historical prices for frequency regula-
tion and energy from the PJM market are used for electricity market
simulation. According to the data center efficiency reports [39,40], the
average power usage effectiveness (PUE) of Google data centers is
about 1.12, i.e., the non-IT load is about 12% of IT load. The PUEs of
Google and Facebook data centers are as low as 1.07. Assuming that
cooling is the major non-IT load, ηcool is set to be 0.12 in the following
simulation.

6.2. Performance of data center requests forecast

The accuracy of the data center requests forecast is crucial to de-
termining the optimal level of bidding quantity for both energy and
frequency regulation service. In the numerical study, the Wikipedia
access trace is adopted to simulate the data center’s workload.
Wikipedia is one of the most visited websites on the Internet, and it is
hosted on more than 350 servers [41]. The Wikipedia’s access trace
contains about 10 percent of all users’ requests to Wikipedia, which is
collected over about 32 days with a granularity of a millisecond.

The requests for visiting English, Spanish and Polish web pages are
used to evaluate the performance of the data center request forecast.
The snapshots of the three groups of web page access data are shown in
Fig. 6.

An ARIMA model is built to perform rolling hour-ahead data center
workload trace prediction. The last week of the workload trace of
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Wikipedia data is used for out-of-sample testing. The forecasted and
actual workload trace are depicted in Fig. 7. As shown in Fig. 7, the
hour-ahead workload trace prediction is fairly accurate. To quantify the
performance of the forecast method, the mean absolute percentage
error (MAPE) of the hour-ahead workload forecast and the standard
deviation normalized over mean of the 5-min workload data of the last
week are shown in Table 1. As shown in the table, the forecast accuracy
for the English web page is the highest with a MAPE smaller than 5%.
Because the normalized standard deviation of the number of visits for
the Spanish and Polish pages are higher, the corresponding prediction
errors are also larger.

In the following simulations, the requests arrival rate is scaled up so
that the peak hourly utilization rate for the data center with 100,000
host servers is about 65% when the CPU operating frequency is 2.1 GHz.

6.3. Performance of the electricity price forecast

The net earnings for a data center to participate in the frequency
regulation market depend on the difference between the frequency
regulation service price and the energy price. When the frequency
regulation service price is higher than the energy price, i.e., the price
difference is positive, the data center receives extra benefits by pro-
viding frequency regulation services compared to simply minimizing its
power consumption. Hence, the accuracy of the price difference pre-
diction is crucial to the successful implementation of the frequency
regulation provision strategy for data centers.

The historical prices for frequency regulation services and energy
from the PJM market is leveraged to build and test the price difference
forecasting algorithms. The explanatory variables in the price forecast
model include the hourly electricity demand, hourly electricity gen-
eration by energy source, and hour of the day. The input features of the
price forecast model are summarized in Table 2. The data sets from the
last week of each month in 2017 are chosen as the test set. The re-
maining data in 2017 are used for training and validation with a split-
ratio of 0.7/0.3. Feed-forward neural network with batch normalization
and two hidden layers of 256 neurons and 128 neurons respectively is
trained. Early stopping [42] technique is adopted based on the F1 score
of the binary classification problem for predicting the sign of the price
difference. F1 score is a widely used metric for binary classification. The
positive class corresponds to the case where the frequency regulation
price is larger than the effective energy price, while the negative class
corresponds to the case where the regulation price is smaller than the
effective energy price. The performance score of the signal following is
assumed to be 100% here. Although the forecast for the magnitude of
price difference is necessary for the risk estimation, the sign of the
frequency regulation price minus the effective energy price is more

important in terms of the total gain. As reported in Table 3, the F1 score
is 0.70 in the test set. Note that, for the false negative cases, i.e., the
expected price difference is wrongly predicted to be negative, the data
center will operate in the power minimization mode, which does not
incur extra cost.

6.4. Performance of frequency regulation service provision by data center

The performance of the frequency regulation service provision by
data center will be evaluated from three perspectives: frequency reg-
ulation signal following performance, electricity cost, and request re-
sponse time. The price prediction result of the 12 last weeks in each
month of the year 2017 is used in the simulation. During the perfor-
mance evaluation, we assume that the data center will provide fre-
quency regulation service to the electricity market whenever the ex-
pected frequency regulation service price is higher than the energy
price. In other words, we do not consider the risk constraint. In the real-
time operation simulations, the data center is expected to follow the
historical frequency regulation signals from the PJM market. The re-
quests served by the data are derived from the scaled requests arrival
rate of English, Spanish and Polish pages in the last week of Wikipedia
trace as shown in Fig. 8, which is repeatedly used. The utilization rate
of each server is determined by Algorithm 1 with the bi-linear power
model. The actual power consumption of the data center is estimated
with empirical measurement data with interpolation.

The frequency regulation signal following performance of the pro-
posed data center power consumption control algorithm is quantified
by three metrics: accuracy, delay, and precision. The frequency reg-
ulation signal and the actual power consumption trajectory of the data
center for an hour is depicted in Fig. 9. It can be seen from the figure
that the proposed data center power consumption control algorithm
allows the data center to closely follow the frequency regulation sig-
nals. The accuracy and precision scores for the 12 weeks are calculated
and shown in Table 4. The power set point can be determined by the
rule-based control algorithm within about 0.2 s with a MATLAB pro-
gram on a standard Dell desktop computer. The delay scores are all
100% for all the test cases. It can be seen that the accuracy and precision

Fig. 6. Request traces of English, Spanish and Polish pages.

Fig. 7. Prediction of English, Spanish and Polish page visits.
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scores of the data center are very high for the three types of page visit
traces. The small frequency regulation signal tracking errors mainly
come from two sources: the requests prediction error and the approx-
imation error of the piece-wise bi-linear server power model. For
comparison, the signal following performance of the benchmarks
without dummy load and using a linear power model [19] are also
provided. When the dummy load control knob is removed, the data
center is unable to closely follow the frequency regulation signal when

the power set point is higher than the maximum power consumption
under uniform request routing. Thus, the introduction of dummy load
increases the range of power consumption of the data center. This al-
lows the data center to meet the power set points that frequency scaling
alone cannot meet. In terms of using a linear power model, the accuracy
score remains reasonable as the correlation is still high. However, the
large power estimation error of the linear model results in a significant
drop in precision score.

We now present the reduction in electricity cost by participating in
the frequency regulation market for the data center. If the data center
does not provide frequency regulation service to the power system, then
it will operate to minimize its power consumption. The electricity costs
of the data center with the proposed algorithm and benchmarks in-
cluding removing the control knob of the dummy load and the power
minimization strategy are reported in Table 5. For a data center with
100,000 servers, the proposed data center control algorithm results in a
$21,590 (8.1%) electricity costs reduction for the 12 weeks on average
compared to the power minimization strategy. With the introduction of
dummy load, a higher upper bound of feasible power consumption can
be achieved, which improves the cost saving of frequency regulation by
about 300% compared to the case without dummy load as shown in
Table 5. Moreover, the revenue from providing frequency regulation
services with the linear power model cannot cover the increased elec-
tricity cost due to poor signal following performance. Hence, the in-
troduction of dummy load and the adoption of a bi-linear model are
crucial to the profitability of the data center frequency regulation ser-
vice provision.

The requests response time of the data center when providing fre-
quency regulation services is calculated based on the proposed request
routing algorithm. The distribution of request response time during the
hours when the data center provides frequency regulation is shown in
Fig. 10. Compared to the uniform request routing strategy, when the
data center follows the frequency regulation signals, only a small por-
tion of requests’ response time moved closer to the SLA’s response time
limit. If the data center does not provide frequency regulation service
and instead minimizes power consumption with a packing strategy,
then the response time of almost all the requests will be very close to
the SLA’s response time limit. Hence, compared to the minimum power

Table 1
Forecast performance comparison among English, Spanish, and Polish Web
Pages.

English Page Spanish Page Polish Page

MAPE 4.09% 7.37% 11.70%
Normalized Standard Deviation 3.58% 10.28% 21.79%

Table 2
Extracted features.

Features

Last-4-h Prices Energy Prices
Regulation Capacity Clearing Prices

Performance Clearing Prices
Mileage Ratio

Last-4-h Generation Solar Generation
Wind Generation
Storage Generation
Hydro Generation
Other Renewable
Nuclear Generation
Coal Generation
Oil Generation
Gas Generation
Multiple Fuels

Other Generation

Last-4-h Load Total Demand

Time Operating Hour of the Day

Table 3
Performance of the price difference forecast.

Training Validation Testing

F1 score 0.73 0.68 0.70

Fig. 8. Hourly-averaged request arrival rate after scaling.

Fig. 9. Frequency regulation signal following of one hour for the three different
pages.
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consumption control strategy, the proposed data center control with
frequency regulation provision reduces not only electricity costs, but
also the response time of requests.

6.5. Impacts of risk limit on frequency regulation bidding capacity and net
earnings

The impacts of risk limit on frequency regulation bidding capacity
and the data center’s net earnings are evaluated in this subsection. As
shown in the earlier subsection, the performance scores of the data
center in following frequency regulation signals are almost perfect,
hence the performance scores are assumed to be 100% in the evaluation
here. For illustrative purpose, only the scaled English page traces are
used in the simulation of this subsection. By setting the weekly bidding
risk limit δrisk at $336, the frequency regulation bidding quantities and
the differences between frequency regulation prices and energy prices
are shown in Fig. 11 for one sample week. In the figure, the green
dashed line represents the maximum feasible frequency regulation
bidding capacity calculated based on the predicted requests arrival rate
of the next hour. The red squares denote the predicted hourly price
differences, while the blue dots are the frequency regulation bidding
capacity obtained from the risk-limited data center bidding strategy. It
can be seen from the figure that the bidding capacities are zero when
the expected price differences are negative. In addition, the actual
bidding capacity is scaled down from the maximum feasible bidding
capacity when the confidence level in the positive price difference
forecast is low. Next, we gradually increased the weekly bidding risk
limit from $0 to $3,000 and recorded the extra earnings of the data
center by providing frequency regulation services compared to the
benchmark case where the data center minimizes power consumption.
The trade-off between the weekly risk limit and the extra net earnings
are depicted in Fig. 12. As shown in the figure, the extra net earnings
made by the data center increases with the bidding risk limit. However,
when the risk limit is very high, the saturation effect kicks in, which
leads to a slow increase in extra net earnings with the risk limit.

7. Conclusion

The operational flexibility of the data centers can be leveraged to
provide valuable frequency regulation services in the smart grid. A
comprehensive frequency regulation service provision framework is
proposed in the paper. A risk constrained hour-ahead bidding strategy

and a real-time frequency regulation signal following algorithm are
developed. The introduction of dummy load and the realistic server
power consumption model allow data centers to follow real-world
frequency regulation signals with over 95% accuracy. Numerical study
with Wikipedia’s access trace shows that with reliable energy and fre-
quency regulation service price forecast, data centers can reduce their
electricity bill by more than 8% without violating service level agree-
ments.
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Table 4
Frequency regulation signal following performance scores.

Dummy load Power model Performance score English page Spanish page Polish page

Yes Bilinear Accuracy 99.76% 99.69% 99.62%
Precision 95.35% 95.87% 95.74%

Linear Accuracy 96.37% 96.89% 96.28%
Precision 52.40% 56.99% 55.38%

No Bilinear Accuracy 99.58% 98.87% 95.44%
Precision 92.59% 92.54% 92.36%

Linear Accuracy 43.97% 52.45% 42.21%
Precision 8.08% 20.04% 20.34%

Table 5
Electricity costs of the data center.

Dummy load Power model English Page Spanish Page Polish Page

Cost With Frequency Regulation ($) Yes Bilinear 298.38 K 238.29 K 217.91 K
Linear 326.83 K 271.15 K 251.08 K

No Bilinear 309.92 K 254.31 K 233.49 K
Linear 337.16 K 278.01 K 252.41 K

Costs with Minimum Power($) 316.65 K 262.62 K 240.08 K

Fig. 10. Distribution of requests response time.
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Appendix A. Derivative of risk function

Lemma 1. If the frequency regulation service price is positive, then the derivative of risk function with respect to power consumption base is greater than or
equal to zero.

Proof. For any >PΔ 0,

+f P t P( ( ) Δ )risk DC
base

∬= +

− −
′ Pr C t C t C t P t P

P t C t score t B t dC t dC t

( ( ), ( )){ ( )[ ( ) Δ

( )] ( ) ( ) ( )} ( ) ( )
V reg efe efe DC

base

DC
min

reg cap reg efe (A.1)

where the integral region is

′ = + − >V C t C t C t P t P P t C t score t B t{ ( ), ( ) ( )[ ( ) Δ ( )] ( ) ( ) ( )}reg efe efe DC
base

DC
min

reg cap (A.2)

when =P t P t( ) ( )DC
base

DC
min , we have =B t( ) 0cap . This is because ⩾B t( ) 0cap and − ⩾P t B t P t( ) ( ) ( )DC

base
cap DC

min .
In this case,

+ ⩾ =f P t P f P t( ( ) Δ ) ( ( )) 0risk DC
base

risk DC
base (A.3)

When >P t P t( ) ( )DC
base

DC
min ,

= ⎧
⎨⎩

>
−

⎫
⎬⎭

V C t C t C t
C t score t B t

P t P t
( ), ( ) ( )

( ) ( ) ( )
( ) ( )reg efe efe

reg cap

DC
base

DC
min (A.4)

′ = ⎧
⎨⎩

>
+ −

⎫
⎬⎭

V C t C t C t
C t score t B t

P t P P t
( ), ( ) ( )

( ) ( ) ( )
( ) Δ ( )reg efe efe

reg cap

DC
base

DC
min (A.5)

We can see that, with > ⊆ ′C t V V( ) 0,reg . Therefore, we have

Fig. 11. Frequency regulation service bidding capacity versus predicted price
difference with weekly risk limit of $336.

Fig. 12. Weekly extra net earnings versus the risk limit.
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Appendix B. Proof of the minimum response time

Lemma 2. The minimum total request response time is achieved when the workload is uniformly distributed to all servers running at 2.1 GHz.

Proof. The response time decreases with the increase of frequency for a given utilization rate. The utilization rate also decreases with the increase of
frequency for a given amount of requests. Hence, the response time decreases with the increase of frequency at each server.
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Ignoring the frequency regulation signal following constraint, the total request response time minimization problem can be reformulated as

∑ ⎛

⎝
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Thus,
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Therefore, the objective function (B.2), which is the sum of r t f( )i rt,2.1, is convex.
The Lagrange function of problem (B.2) and (B.3) is:
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where λ is the Lagrange multiplier.
By taking partial derivative with respect to r t( )i ,
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At optimal solutions, (B.8) equals zero. Hence, we have
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The above optimality condition is achieved by uniformed routing, i.e. = ∀r t r t i j( ) ( ), ,i j .
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Appendix C. Packing strategy monotonically reduces power consumption to the minimum power consumption

Lemma 3. When ⩽ ×r t u N( ) (2.0)max × cap (2.0)max , starting from the baseline operating strategy where the requests are uniformly routed to all servers
running at =f 2.1 GHz, the total power consumption can be reduced by selecting n servers whose workload are packed to ′n servers running at 2.0 GHz with the
maximum utilization rateu (2.0)max as in Eq.(42). By gradually increasing n, the power consumption can be monotonically reduced to the minimum power
consumption with error less than the power consumption of one server, which is achieved when =n N .

Lemma 4. When > ×r t u N( ) (2.0)max × cap (2.0)max , starting from the baseline operating strategy where the requests are uniformly routed to all servers
running at =f 2.1 GHz, the total power consumption can be reduced by curtailing workload on n servers to operate at 2.0 GHz with the maximum utilization
rateu (2.0)max and uniformly distributing the remaining workload on the −N nservers as in Eq.(45). By gradually increasing n, the power consumption can be
monotonically reduced to the minimum power consumption with error less than the power consumption of two servers, which is achieved when = −n N n *2.1 ,
where

=
−

−
∗n

r t u Ncap
u cap u cap

( ) (2.0) (2.0)
(2.1) (2.1) (2.0) (2.0)

max max

max max max max
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(C.1)

Proof. The total power consumption of a data center is:
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The dynamic power consumption per request per second for server i is defined as

= −dpr t P t P
r t
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(C.3)

Substitute the energy consumption model (4) into (C.3):
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Eq. (C.3) can be transformed into the following form:

= + +
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where =cap cap f/f max max. By plugging =u t( ) 0i into Eq. (4), we get + − ⩾α f t α P( ) 0j
i

j
3 4 0 or equivalently:

+
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⩾α
α P

f t( )
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j

i
3
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(C.6)

Therefore, for a given CPU frequency, the first two terms on the right-hand side of (C.5) are constant, and the last term decreases with the increase of
u t( )i . In other words, the dynamic power consumption per request for server i dpr t, ( )i , decreases with higher utilization rate.

It can be seen in Fig. C.13 that for a given utilization rate, the dynamic power consumption per request, dpri , roughly stays at the same value when
⩽ ⩽f1.2 2.0. However, as shown in Fig. 5, for a given SLA limit rtSLA, a higher utilization rate can be reached when the CPU frequency increases from

1.2 GHz to 2.0 GHz. In other words, = > ∀ ∈u f u f f( 2.0) ( ), [1.2, 2.0)max max . As the dpr t( )i decreases with higher
= = = < = ∀ ∈u t dpr f u u f dpr f u u f f( ), ( 2.0, ( 2.0)) ( , ( )), [1.2, 2.0)i i max i max .

It can also be seen in Fig. C.13 that dpri jumps when f increases from 2.0 GHz to 2.1 GHz. By performing a calculation with server power
consumption curve and dynamic power curve parameters, we can verify that = = = > = = =dpr f u u f dpr f u u f( 2.1, ( 2.1)) ( 2.0, ( 2.0))i max i max .
Therefore, the minimum dynamic power consumption per request of each server, dpr t( )i

min , is achieved when the requests are packed to fully utilize

Fig. C.13. Dynamic power consumption per request.
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the servers operating with CPU frequency of 2.0 GHz.
ForLemma 3: If the total requests arrival rate falls into the following range, ⩽ ×r t u N( ) (2.0)max × cap (2.0)max , we can pack the workload of n

servers to ′n servers with =f t( ) 2.0i and =u t u( ) (2.0)i max according to Eq. (43).
Let’s select two different numbers of servers n1 and n2 for packing, where <n n1 2. We will be packing the workload of n1 (n2) servers to ′n1 ( ′n2)

servers running at 2.0 GHz with a utilization rate of u (2.0)max . ′n1 and ′n2 can be calculated as follows:
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Thus, ′ ⩽ ′n n1 2. Let’s define the workload handled by he ′n1 and ′n2 servers as

= ′r t n u cap( ) (2.0) (2.0)max max1 1 (C.9)

= ′r t n u cap( ) (2.0) (2.0)max max2 2 (C.10)

Since ′ ⩽ ′n n1 2, we have ⩽r t r t( ) ( )1 2 .
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Therefore, by gradually increasing n, the power consumption reduces monotonically.
For any feasible request routing strategy, we have
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where n2.0 is the number of servers running at 2.0 GHz with a utilization rate of u (2.0)max after packing all the workload.
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ForLemma 4: If the total requests arrival rate falls into the following range, > × ×r t u N cap( ) (2.0) (2.0)max max , to satisfy the SLA constraint,
there must be some servers running at =f 2.1 GHz to handle the additional workload.

In this case, the data center power consumption can be reduced by decreasing the workload on n servers by reducing the CPU frequency from
2.1 GHz to 2.0 GHz with the maximum utilization rate u (2.0)max . The remaining workload will be uniformly distributed to the −N n servers ac-
cording to Eq. (45).

Let’s select two different number of servers n1 and n2 for workload and CPU frequency reduction, where <n n1 2.
Define the workload handled by the n1 and n2 servers as r1 and r2. The workload can be calculated as

=
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Because <n n1 2, we have <r t r t( ) ( )1 2 .
Now, let’s define the utilization rate of the remaining −N n1 and −N n2 servers as u1 and u2. The utilization rates can be calculated as

=
−
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+u t
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Therefore, <u t u t( ) ( )1 2 and = = > = =dpr f u u t dpr f u u t( 2.1, ( )) ( 2.1, ( ))i i1 2 .
Now it can be shown that
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Therefore, by gradually increasing n, the data center power consumption will decrease monotonically.
When = − ∗n N n2.1, the minimum power consumption is achieved, where
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Note that ∗n2.1 is the minimum number of servers that have to operate at 2.1 GHz.
Denote the minimum dynamic power consumption per request dpr t( )i at =f 2.1 as =dpr t f( , 2.1)i

min .
Then, we have
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Next we will prove that Eq. (C.18) holds and P̲2 is the lower bound of power consumption when ⩾ × ×r t u N cap( ) (2.0) (2.0)max max .
Let’s denote the workload handled by the servers running at =f 2.0GHz as ′r t( ). ′r t( ) can then be calculated as
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Let’s denote the remaining workload to be handled by servers running at =f 2.1 as ∗r t( ). Thus we have

= − ′∗r t r t r t( ) ( ) ( ) (C.20)

Denote the average dynamic power consumption per request of ∗r t( ) as ∗dpr r t( ( )) and the average dynamic power consumption per request of ′r t( ) as
′dpr r t( ( )). As ⩾ =∗dpr r t dpr t f( ( )) ( , 2.1)i

min and ′ ⩾dpr r t dpr t( ( )) ( )i
min , then for any feasible operating point, we have

∑ ∑= ⎛

⎝
⎜

⎞

⎠
⎟ + ′ ⎛

⎝
⎜ ′ ⎞

⎠
⎟ + ⩾ ⎛

⎝
⎜ = ⎞

⎠
⎟ + ′ +∗ ∗

=

∗

=

P t r t dpr r t r t dpr r t P dpr t f r t dpr t r t P( ) ( ) ( ) ( ) ( ) , 2.1 ( ) ( ) ( )DC
i

N

i
min

i
min

i

N

1
0

1
0

(C.21)

Appendix D. Proof of the minimum amount of requests with increased response time

Lemma 5. The amount of requests with increased response time compared to the uniform routing is minimized with the packing strategy in the CASE 2
( <P t P t( ) ( )set uni and ⩽ × × =r t u N cap f( ) (2.0) ( 2.0)max max ) of Section5.2.

Proof. For the real-time control strategy of CASE 2 in section 5.2, the response time of the requests on the −N n servers running at =f 2.1 GHz is the
same as that of the uniformed routing. In order to reduce data center power consumption from the power consumption under uniform routing policy
P t( )uni by P tΔ ( ), we have to increase the response time for r tΔ ( ) requests per second by reducing their dynamic power consumption from dpr t( )uni to

′dpr t( )i .
Note that r t P t dpr tΔ ( ), Δ ( ), ( )i , and ′dpr t( )i satisfy the following relationship:

=
− ′

r t P t
dpr t dpr t

Δ ( ) Δ ( )
( ) ( )uni i (D.1)

In order to minimize the number of requests with increased response time per second, r tΔ ( ), we have to set ′dpr t( )i at its minimum which is dpr t( )i
min .

Now, as shown in the Appendix C, the minimum dynamic power consumption per request per second can be achieved when the servers are
operating at =f 2.0 GHz and u (2.0)max . This is the same packing strategy for Case 2 in Section 5.2. Therefore, the packing strategy proposed for Case
2 minimizes the number of requests with increased response time.
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Appendix E. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.apenergy.2019.05.107.
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