
Abstract
Current trends signal an imminent crisis in the simulation of
future CMPs (Chip Multiprocessors). Future micro-archi-
tectures will offer more and more thread contexts to execute
parallel programs, but the execution speed of each thread
will not improve at the same pace. CMPs with 10’s or even
100’s of cores are envisioned. Simulating these future CMPs
efficiently without compromising accuracy is a challenge.
Slack simulation is a general parallel simulation paradigm
which provides flexible trade-offs between simulation accu-
racy and speed. Simulation threads do not synchronize after
every target core cycle as in cycle-by-cycle simulation.
Rather a maximum slack (the slack bound) is enforced
between the clocks of all simulated cores. A slack simulation
may become inaccurate because of simulation violations.
Such violations occur when a resource is accessed by two
cores in different order in the simulation and in the target
system. We introduce and demonstrate techniques to detect
violations, to adapt the simulation slack to maintain a target
violation rate, and to checkpoint and rollback a slack simu-
lation when violations are detected. We show some simula-
tion performance/accuracy data for a set of five Splash
benchmarks in the context of an 8-core CMP with a snoop-
ing cache coherence protocol simulated on SlackSim, our
universal slack simulation platform.

1  Introduction
As computer architecture design rapidly moves into the chip
multiprocessor (CMP) era, we cannot keep simulating
CMPs in a sequential fashion as single processor systems
are, because a single simulation thread must simulate the
activities of 10s, 100s or even 1000s of cores, leading to
unacceptable simulation slowdown. Fortunately, CMPs
have emerged as new parallel computing platforms, thus
offering new opportunities to overcome the sequential simu-
lation bottleneck. It is imperative that future CMP designs
exploit current CMPs to parallelize simulations. In its sim-
plest form, each host CMP core can simulate a subset of tar-
get CMP cores. The parallel simulation paradigm of using
host CMPs to simulate target CMPs is a scalable solution.
As the host thread count increases target CMPs with poten-
tially more cores can be simulated without encountering the

dramatic slowdowns that plague sequential simulations. In
parallel programming paradigms, communication and syn-
chronization between different computing processes are
critical to performance. Because CMPs provide low-latency
access to shared variables they are excellent parallel com-
puting platforms for the implementation of parallel simula-
tors. CMPs typically support the shared-memory
programming model, in which a parallel CMP simulator can
exploit fast Read/Write operations on shared variables in
order to implement communication and synchronization
between simulation threads. 

In a single-threaded simulation of a CMP, the simulations of
every core are interleaved on a clock by clock basis (“cycle-
by-cycle” simulation). By incrementing the clock-cycle
counter only when all cores have completed their execution
of one cycle, any external effect (data, control, or structural
hazard) which one core may have on another is faithfully
simulated because events effectively take place at the end of
each clock. We consider cycle-by-cycle (will be referred to
as CC) simulation as the “gold standard” against which we
measure the success of the proposed approach in this
research. 

CC simulation can be easily parallelized. Let C be the num-
ber of cores in the target CMP and let N be the number of
hardware thread contexts in the host CMP. A natural and
scalable division of the simulation work is to allocate the
simulation of one target core to a simulation thread and then
map C/N simulation threads to each hardware thread con-
text in the host. In CC simulations, every simulation thread
executes one cycle of its target core and then synchronizes
with a barrier. This approach is scalable both from a pro-
gramming and performance point of view.

The speed of parallel CMP simulations relies on effective
implementations at four layers: (1) application (benchmark)
layer, (2) target hardware layer, (3) host hardware layer, and
(4) simulation layer. At the application layer the simulation
speedup is limited by the algorithmic speedup. If the target
application has little or no parallelism, very little can be
gained by running the simulation on a CMP, since each host
thread context is merely an emulator of each target core. If
the target CMP architecture has inherent design bottlenecks
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such as a small number of cores or if its memory architec-
ture is very inefficient, parallel simulation will not help. For
instance, if the target cores mostly wait on memory then the
simulation threads that simulate the target cores will also be
mostly idle. At the host hardware level, the CMP host must
have the resources to execute the parallel simulation effi-
ciently, for example by supporting fast read/write sharing
and by having enough on-chip cache to maintain the work-
ing set of the simulation. The inherent inefficiencies at the
benchmark, target CMP and host hardware layer are orthog-
onal to the focus of this research, which is to improve the
performance of the simulation layer. For instance, the simu-
lator could be designed to maximize the efficiency of the
hardware resources offered by the host CMP. But this is an
approach that is very implementation dependent and essen-
tially non-portable. Rather this research addresses a more
general problem: the interactions among the host threads
simulating cores and excessive synchronizations among
them. The parallel CC simulation approach as described
above is inefficient as the number of host instructions exe-
cuted between two synchronizations is just several thou-
sands. This frequent synchronization may lead to the
serialization of the simulation and low parallel speedups. 

Slack simulation is a new paradigm for the parallel simula-
tion of CMPs on CMPs [8][9]. In slack simulations the sim-
ulated cores do not synchronize after each simulated cycle
as in cycle-by-cycle simulations or after a fixed number of
cycles as in quantum simulations [18], rather they are
granted a slack. The simulation slack of any two target cores
in a slack simulation is the difference between their clocks.
In bounded slack simulations, the simulated clocks of all
target cores are kept within a range called the slack bound.
For example if the slack is set at 10 cycles, then the differ-
ence between any two target core clocks can be at most 10.
The simulation of a target core is stalled whenever its clock
falls outside the slack bound because its simulation pro-
gresses too fast. When the slack is unbounded, target cores
are simulated independently of each other with no synchro-
nization between simulation threads. Our prior research
[8][9] as well as more recent work [16] have shown that
slack simulations may lead to simulation violations, which
in turn affects simulation accuracy. In general, as the simu-
lation slack between simulation threads increases, the num-
ber of simulation violations increase but, in general, the
simulation speed increases because the simulations of the
cores are less and less dependent on each other.

Slack simulations are different from quantum simulations
[18], in which simulation threads execute a barrier synchro-
nization after a number of simulated cycles. The accuracy of
quantum simulations depends on the size of the quantum.
When the quantum size is not more than the minimum
latency needed to propagate an event generated by a target

core to a point where it could affect another target core’s
simulation (i.e., by communication, synchronization, or
resource conflicts), quantum simulations are deemed as
accurate as cycle-by-cycle simulations. We call this mini-
mum latency the critical latency. Identifying the critical
latency in a particular simulated system may be difficult and
should be done safely. For example, threads of a CMP often
conflict for shared resources such as the interconnect
between cores and L2 banks and such conflicts may occur in
only one cycle of latency, which would set the quantum to
one clock [3]. If bus conflicts are accurately modeled then
the critical latency of a quantum simulation would have to
be one cycle. A quantum of one clock effectively degrades a
quantum simulation to become a cycle-by-cycle simulation.
In contrast to quantum, slack simulations do not rely on
such rigid synchronization. Rather than strictly enforcing
synchronization at the end of each quantum, bounded slack
simulations enforce synchronization only when the simula-
tion slack between any two cores reaches the bound. Fur-
thermore, when the slower core advances one cycle the
faster core simulation can be immediately released and can
advance one cycle. Such flexibility enables slack simula-
tions to provide consistent speedup over prior approaches
that rely on rigid synchronization. 

It is important to understand the distinction between simula-
tion violation and simulation error. We first provide a brief
description of simulation violations. A comprehensive
description is provided in section 3. 

Simulation Violations: In order to understand the sources
of simulation violations in slack simulations, it is necessary
to differentiate between simulated time and simulation time.
Simulation time is defined as the amount of time the simula-
tor has executed for, which can be measured using wall
clock time. Simulated time is defined as the clock cycle that
a target core is currently running at. Slack simulations cause
distortion in simulated time. For instance, at simulation time
(or wall clock time) T one target core may be running at
cycle 1 while another target core may be running at cycle 5.
This distortion in simulated time is a source of violations in
slack simulation. For instance, a target core may access a
shared resource such as an L2 cache bank at simulated cycle
5 while another target core may access the same resource at
simulated cycle 1. Both accesses may happen at the same
simulation time T resulting in an out-of-order access to the
L2 cache bank in terms of simulated cycles.   

Simulation Error: We define simulation error as the differ-
ence in any metric of interest, such as target CMP’s execu-
tion time or CPI, between CC simulation and slack
simulation. In this paper we use the target CMP's execution
time difference to measure simulation error. 

In essence, the flexible slack between target cores causes
simulated time distortions, which eventually lead to simula-



tion errors, because the simulated workload state, the simu-
lated architecture state and the simulation state march at the
pace of simulation time, not of simulated time. 

The goal of our research is to improve simulation perfor-
mance by reducing simulation time without compromising
simulation accuracy as measured by simulation error. At
this point it is important to emphasize that a slack simula-
tion never deadlocks or becomes unstable, because both
simulation and simulated times never decrease [6][7][16].
In the extreme case (unbounded slack), target cores can be
out of sync by thousands of cycles, yet, surprisingly, the
simulation error (on the target execution time metric) is
often within single digit percent. The key observation made
in prior work on slack simulations is that parallel architec-
tural simulators of parallel machines survive violations nat-
urally. Thus the major problem is that of measuring and
controlling the error rate, while still taking advantage of
slack for simulation performance. Industrial design teams
explore the next generation of CMPs using the current gen-
eration of CMPs. In this context accuracy is paramount and
hence cycle-by-cycle simulation may be the only acceptable
approach. Even in exploratory studies evaluating large scale
futuristic CMPs, the error rate must be tightly controlled to
make sure that it does not compromise the intended purpose
of simulation, namely the quantitative evaluation of the
design. 

Accuracy control in slack simulations is explored to
enhance the broader use of slack simulations and it is the
major contribution of this paper. In particular this paper
makes the following three contributions: 

1) A method to detect and track simulation violation rate
and use it as a universal confidence factor in the simulation
results.

2) A technique to adapt slack dynamically at run time to
keep the violation rate at or below a desired threshold. The
dynamic adaptation mechanism uses our violation tracking
mechanism to achieve its goal. 

3) Finally this paper explores the use of checkpoint and roll
back the simulation when violations occur, thereby com-
pletely eliminating all simulation violations. 

Concrete results on simulation accuracy and speed are
shown for five Splash benchmarks [21] running on an eight
core target CMP with a bus-based snooping protocol. In this
paper we do not revisit the problem of parallel vs. sequential
CC. Rather we look at the performance and accuracy of
slack simulations. So our newly proposed schemes are com-
pared against parallel CC both for accuracy and perfor-
mance.

The rest of the paper is organized as follows. In section 2
the simulation environment used in this paper is briefly
reviewed. In section 3 we overview simulation violations

and their detection to assess the accuracy and quality of a
slack simulation run. In sections 4 and 5 we introduce two
new schemes called adaptive slack simulation and specula-
tive slack simulation respectively. Section 6 presents related
work and section 7 our conclusions and expose avenues for
future work. 

2  SlackSim
We have developed a simulation platform to experiment
with slack simulations and called SlackSim[9]. In SlackSim,
simulations are parallelized using the POSIX threads pro-
gramming model. Figure 1 shows the general architecture of
SlackSim. It is made of two types of threads: several core
threads and one simulation manager thread. A core thread
simulates a single target core of a CMP with its L1 caches.
The simulation manager thread has two functions. Its first
function is to simulate the on-chip lower-level cache hierar-
chy including L2 cache banks and their interconnection to
cores. Its second function is to orchestrate and pace the
progress of the entire simulation. 

The simulation pace of each core thread is controlled by two
variables per core thread shared by the core thread and the
simulation manager thread: local time and max local time. A
core thread increments its local time after every simulated
clock cycle of its target core. A core thread can advance its
own simulation for as long as its local time is less than or
equal to its max local time. It suspends itself when its local
time reaches its max local time. 

The simulation manager thread also maintains the global
time, which is equal to the smallest local time of all core
threads. As the global time increases, the simulation moves
forward. The simulation manager thread synchronizes the
progress of the simulation by setting the max local time of
each core thread according to the slack scheme. For
instance, when simulating a bounded slack simulation with
a slack of 5 cycles the max local time of each core is set to
global time + 5. When the slowest simulation thread com-
pletes a target cycle, the max local times of all simulation
threads are incremented.

The communication between the core threads and the simu-
lation manager thread is primarily realized through event

Figure 1. The architecture of SlackSim.
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queues. Each core thread has two queues: an outgoing event
queue (OutQ) and an incoming event queue (InQ). The sim-
ulation manager thread has a global event queue (GQ). In
each entry, a timestamp records the time (as defined by the
local time of a given thread) at which an event should take
effect. When a memory event, such as an L1 cache miss,
takes place in a core, the core thread allocates and fills an
OutQ entry for the request, and then it continues its simula-
tion until its local time reaches the max local time (assum-
ing a non-blocking L1 cache). Meanwhile, the simulation
manager thread continually fetches entries from the head of
every core thread’s OutQ. Once the simulation manager
thread reads out an entry, it allocates a GQ entry for the
request, and then fills it. 

Each core thread checks its InQ in every simulated cycle in
order to see if one of its requests has been processed by the
manager thread. If so, the core thread reads out the data field
of the entry when its local time becomes equal to the time-
stamp of the entry. Note that GQ consolidates all the local
thread OutQ requests in a single queue, which allows the
thread manager to efficiently manage and schedule all the
GQ events for various slack simulation schemes. 

SlackSim is built upon SimpleScalar [1]. The two most sig-
nificant modifications we have made to SimpleScalar are: 1)
modifications to enable the simulation of every core in sepa-
rate threads and 2) modifications to support an Intel Net-
Burst-like OoO microarchitecture [12]. For instance, in the
target core, register values are fetched just before execution.
Unlike SimpleScalar, which simulates instruction execution
at the dispatch stage, SlackSim executes each instruction
when it reaches an execution unit. 

The simulation manager thread seems to be a simulation
bottleneck. However, prior work [7] has shown that the
average amount of work in the manager thread is much less
than that of each core thread. If the manager thread becomes
a bottleneck, then it should be organized hierarchically,
reflecting the structure of future large-scale CMPs.

2.1  Experimental Setup
SlackSim can simulate a variety of target CMP configura-
tions. However, in all the results presented in this paper, the
target system is an 8-core CMP with the SimpleScalar PISA
instruction set. Each core in the CMP is modeled as a 4-way
issue Out-of-Order processor with up to 64 in-flight instruc-
tions, 16KB I/D caches and 2MB shared L2 cache with an
access latency of 8 clocks. L1 caches are lock-up free and
kept coherent using a MESI protocol on a request/response
bus. Snoop requests are put on the request bus and all cores
plus the L2 cache bank snoop the request. Responses (data)
propagate on the response bus. The L2 miss latency is 100
clocks. The target CMP is illustrated in Figure 2. Our host
platform is a Dell PC server powered by two Intel Quad-

core Xeon processors running at 1.6 GHz and with 4GBytes
of memory. The operating system is Ubuntu Linux Version
6.06. The simulator is compiled using GCC 4.1.2 with “-
O3” as flag. 

We have selected five parallel benchmarks from the
SPLASH-2 suite [21]: Barnes, FFT, LU, Water-Nsquared
and Radix shown in Table 1. Every benchmark starts as one
single thread. Then this thread spawns other workload
threads. In our experiments, every benchmark is composed
of a total of eight workload threads. In order to skip the ini-
tialization phase of the benchmarks, we start collecting sim-
ulation data right after all workload threads are created.
Then, 100M committed instructions are simulated in all
configurations. 

Each CMP core is simulated by one POSIX thread. L2 and
the bus interconnect are simulated by a separate Pthread,
which also controls the simulation. Hence, a simulation is
composed of 9 POSIX threads simulating an 8-core target
CMP. 

3  Categorization and Detection of Simulation 
Violations
Simulation violations are categorized into three types. In
this section we overview them and provide methods to
detect them. This detection of simulation violations is at the
root of the adaptive and checkpoint-rollback schemes pro-
posed in this paper to control the accuracy of slack simula-
tions.

3.1  Simulation State Violations 

Simulation state violations occur when variables internal to
the simulator that track and record the state of each resource
are updated out of order. For instance two target cores may
both access the bus at the same simulated cycle 5 since the
two target cores may reach their respective simulated cycle
5 at different simulation times. This is an inconsistency in
the simulation because the bus appears to satisfy two bus
requests at the same time in the simulated system. In the
above example the simulation state of the resource that is
shared between multiple target cores is violated. It is also
possible that the simulation state of a target core itself can

P0 P1 P7

L1 L1 L1
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Figure 2. Target CMP
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Request bus
Reply bus

Benchmark Input Set

Barnes 1024

FFT 64K points

LU 256 x 256 matrix

W-Nsq 216 molecules

Radix 262144 keys

Table 1. Benchmarks.



be violated. For instance, if two L1 miss requests are satis-
fied in a different order in slack simulation as compared to
CC then the core may execute instructions in different order
compared to CC resulting in a simulation state violation on
the core side. 

Simulation state violations can be detected by attaching a
monitoring variable to a resource tracking variable. The
monitoring variable records the largest timestamp of any
incoming operation on a tracking variable. When an opera-
tion is conducted, its timestamp is compared against the
value of the monitoring variable. If the incoming timestamp
is larger, the monitoring variable is updated with the new
value. Otherwise, a violation is detected. 

In SlackSim, the manager thread maintains a monitoring
variable for the shared bus to detect bus violations. To
detect violations at the core thread side a gross approxima-
tion is used. Instead of maintaining a monitoring variable
for each internal resource in the core, the entire core node is
treated as one resource and if any incoming event’s time-
stamp is less than the local time of the core a violation is
reported. This simplification may lead to over-counting sim-
ulation state violations since not all late incoming events
might create a simulation state violation. 

3.2  Simulated System State Violations

Simulated system state violations happen when storage
structures in the target system which keep the information
needed to enforce correct hardware operation are accessed
out of order. For instance, consider a two core CMP with
directory based coherence. Target core 1 may write to a
cache block at its simulated cycle 4 at simulation time T1
thereby setting the directory structure's presence bit and
dirty bit to point to target core 1. However, target core 2
may reach its own simulated cycle 3 at a later simulation
time T2 (T2>T1) and access (read/write) a different word in
the same cache block. Here at simulated cycle 3 of target
core 2 the directory structure content is inconsistent with
what target core 2 would have seen in the CC simulation.
Even the final directory structure content after both target
cores accessed the cache block is inconsistent with what
would be in the CC simulation. Just like simulation state

violations, simulated system state violations can occur
either in target cores or on the shared resources of the target
CMP. These violations are more expensive to monitor since
the target system contains large amounts of storage struc-
tures, such as cache protocol directory entries, but the basic
detection mechanism is similar to that of simulation state
violations. 

In the current simulations coherence in the target system is
maintained by snooping on a bus. However the manager
thread must keep track of the state of all blocks in L1 caches
in order to simulate snooping. The data structure that does
that is very much like a directory. We call it the cache map
to avoid confusion. The cache map records the content of all
L1 caches in the target system. It is equivalent to a copy of
the L1 cache directories. The manager thread maintains a
monitoring variable for every cache map entry. At the core
thread side, we use the same approximation as for simula-
tion state violations, leading to the over-counting of viola-
tions. For instance, consider the case where a core’s local
time is 10 and the core receives an incoming request with a
timestamp of 5. We conservatively count this incoming
request as a simulated system state violation. However, this
incoming request should have generated a simulated system
violation only if the core had accessed the affected cache
line sometime after its local time 5. In order to remove this
over-counting of violations one would have to associate a
monitoring variable to timestamp the accesses of each L1
cache line in the core. 

3.3  Simulated Workload State Violations

Simulated workload state violations occur if values of the
same address which is part of the target memory system
cross each other differently in the simulation than in the tar-
get system due to race conditions. In the above directory
example used to illustrate simulated system state violations,
if both cores were to access the same data address, then tar-
get core 2 would read stale data since its simulated cycle 3
was executed later than the simulated cycle 4 of target core
1. Clearly these violations result in an incorrect execution of
the benchmark. The workloads we use are properly syn-
chronized to avoid data races on shared variables. Further-

(a) Bus violations (b) Map violations (c) Core side violations
Figure 3. Violation rates of bus, cache map and core with bounded slack
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more, in SlackSim, synchronizations are reliably executed
inside the simulator using the parallel programming APIs
from MP_Simplesim [15] so that simulated workload state
violations do not occur.

3.4  Basic Results for Simulation Violations 

Figure 3 shows how simulation violation rates trend as the
slack bound increases. The X-axis is labelled with the slack
bound. The Y-axis is labelled with the simulation violation
rate, which is defined as the violation count divided by the
number of simulated cycles. Figures 3(a) and (b) display the
simulation violation rates of the bus and cache map, which
correspond to the simulation state and simulated system
state violations, respectively. Both violations are detected
by the slack manager thread. Figure 3(c) shows the violation
rate at the core side.

The results shown in Figure 3 lead to the following observa-
tions. First, bus violations are much more frequent than core
and cache map violations. Second, as the size of the slack
bound increases, the number of bus violations gradually
grows until it reaches a plateau. On the other hand, the num-
ber of cache map violations is negligible for small slack
bounds (up to 60), and then gradually grows. As explained
in section 3.1 and 3.2, our simplified approach to measuring
core violations overcounts the number of violations and yet
the violation rate is negligibly small for slack bounds up to
9 cycles and then gradually increases. These observations
are consistent with the fact that cache map modifications
have much longer latencies than bus accesses and are dis-
tributed across a large state. 

Figure 4 shows how the relative simulation error rate varies
as the slack increases. The relative simulation error is the
difference between the execution times obtained with a
slack simulation and with CC divided by the execution time
obtained with CC. The figure shows that the error rate
increases with slack, and the trend is very similar to that of
simulation violations. The strong correlation between simu-
lation violation rate and simulation error rate is an important
observation that we will exploit in our adaptive and specula-
tive slack simulation frameworks. 

3.5  Controlling Simulation Errors

We have demonstrated in section 3.4 (as well as in our pre-
vious work [8][9]) that with small slack bounds simulation
violations and the resulting simulation error rate can be kept
small while achieving good simulation speedup. Even when
some violation rates are high it is worth noting that not all
violations are equally important. Different violation types
may have different impacts on simulation results and users
may want to overlook some types of violations based on
their perception, experience, or design goals. For example,
cache map violations could have a much greater impact in
an evaluation of the cache protocol than bus violations, in
which case bus violations might be ignored.

Ideally users would like to know the simulation error rate at
the end of a simulation. Unfortunately measuring the error
rate on a metric dynamically is not feasible. However, our
results show that there is a strong correlation between the
simulation error rate and the simulation violation rate.
Hence one can detect and count the number of violations of
each type and report these numbers at the end of a simula-
tion run. Given that the simulation error is correlated with
the violation rate a user can assess the validity of the results
based on the measured violation rate. Note that the detection
of violations takes place during simulation and unavoidably
disturbs the execution of SlackSim itself. Therefore the
progress of target threads might be slightly different from
what really happens when the violation detection mecha-
nism is turned off. The overhead of tracking violations in
SlackSim slows the simulation down by a factor of 5 to 10%
for all benchmarks.

While simulation violation rates are quite low the basic
SlackSim mechanism does not necessarily guarantee that
violation rates stay low in all cases. Depending on the inter-
actions between benchmarks and target CMP architecture
violation rates can be high, and the error rate could become
so high as to ruin the credibility of the simulation results.
Although we have not experienced such problems, it is pru-
dent to have safeguards in place so that the error rate can be
bounded within a predefined range. One way to deal with
this problem would be to derive some theoretical bound on
the error rate for the metric of choice based on the simula-
tion violation rate. Unfortunately, such bound remains elu-
sive. Rather, in the balance of this paper, we explore two
dynamic schemes to reduce or even eliminate simulation
violations: adaptive slack simulations and speculative slack
simulations.

Adaptive slack simulation aims to control the error rate by
changing the slack bound dynamically based on a measure
of simulation violation rate. Ideally one would prefer to
control the simulation error rate rather than the violation
rate. But as mentioned earlier due to the infeasibility of

Figure 4. Simulation error with bounded slack.
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measuring simulation error rate we use simulation violation
rate as a proxy. The goal of speculative slack simulation is
to eliminate certain (or all) types of simulation violations by
checkpointing the simulation periodically, tracking selected
violation types and rolling back the simulation whenever
selected violations are detected. Both approaches rely on
violations detection mechanisms instrumented in bounded
slack simulations. 

4  Adaptive Slack Simulations
In this section we present an approach to control violation
rate by adaptively adjusting the slack bound. This proposed
scheme, called adaptive slack, creates a feedback control
loop into a bounded slack simulation to adjust the slack
bound based on a running estimate of simulation error. Ide-
ally, the dynamic error rate on the chosen output metric(s)
should guide this feedback mechanism.

However tracking the error rate on the metric dynamically is
unfeasible. Hence we need to choose a convenient proxy for
the simulation error to control an adaptive slack simulation.
We have chosen the simulation violation rate as the proxy to
steer the adaptive slack simulation. We compute the total
simulation violations using the summation of simulation
state violations and simulated system state violations. These
violations can be easily tracked dynamically, and their num-
ber correlates well with errors on the execution time. 

The basic idea is to increase the slack bound when viola-
tions happen infrequently, and to reduce it when violations
happen frequently. The violation rates for the bus and cache
map are maintained by the manager thread. Core violations
are tracked by individual target core threads, which commu-

nicate their violation count to the manager through a shared
variable. Before the simulation starts, the slack bound is set
to a default value. If the violation rate is less than a preset
target, the slack bound is increased up to a maximum slack
bound value. On the other hand, if the violation rate
becomes larger than the target, the slack bound is progres-
sively decreased. In our current implementation the default
slack bound is set as 10 cycles and the maximum slack
bound is 5000 cycles. We increase the slack bound in incre-
ments of 5% over the current slack. When the slack bound
needs to be decreased we decrease it by 35% until the slack
eventually becomes zero. By rapidly decreasing the slack
we quickly bring down the violation rate.

Frequent changes to the slack bound even if the violation
rate deviates from the target rate by a very small amount
may cause high frequency oscillations and large overheads.
To avoid that, we explored one simple approach: we do not
adjust the slack bound for as long as the simulation viola-
tion rate remains within a preset range above or below the
target violation rate. This range is called the violation band.

Figure 5 illustrates the relationship between simulation vio-
lation rate and simulation time. There are three series of
data. The first two series are results from adaptive slack
simulations with different violation bands: 0% and 5%.
When the violation band is 5%, the slack bound does not
adjust for as long as the current violation rate falls in
between 95% to 105% of the target violation rate. Each of
these two series is made of 12 data points, with target viola-
tion rates of 0.01%, 0.06%, 0.10%, 0.14%, 0.18%, 0.20%,
0.22%, 0.26%, 0.30%, 0.34%, 0.38%, and 0.40%. Wider
violation bands lead to shorter simulation times. This phe-

(a) Barnes (b) FFT Radix

(c) LU (d) Water-Nsquared
Figure 5. Simulation time vs. simulation violation rate of bounded slack and adaptive slack.
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nomenon is caused by the overhead of slack bound adjust-
ment.

For the purpose of comparison, Figure 5 also shows a third
series of data points for CC and bounded slack simulations
with slack bounds from 1 to 20 (S1-20). Adaptive slack sim-
ulations always run faster than cycle-by-cycle simulation
but most of the times bounded slack simulations with simi-
lar violation rates run faster than adaptive slack with the
same target violation rate. This is expected because adaptive
slack simulations include overhead to achieve a guaranteed
target violation rate, providing a “safety net”. This lower
performance is the price to pay for this “safety net”. 

Figure 6 shows the correlation between the simulation vio-
lation rate and the relative execution time error of the target
system for a subset of benchmarks. We observe a general
trend that relative execution time errors increase as the vio-
lation rates grow. In our evaluations, we considered only
one target metric, namely target CMP execution time. How-
ever in architectural simulations many other metrics may be
considered and more work is needed to evaluate the correla-
tion with other metrics. 

5  Speculative Slack Simulation
In speculative slack simulation, simulation violations are
allowed to occur, but a recovery mechanism is provided to
restore the simulation to a consistent state whenever they
happen. Checkpointing and rollback on violations can
potentially eliminate all violations from any slack simula-
tion. 

As simulation progresses, checkpoints of the entire simula-
tor are made periodically. When a violation is detected, the
simulation is rolled back to a previously saved checkpoint
before the violation occurred. The wasted simulation time
between the violation and the closest checkpoint is called
the rollback distance. After the rollback, simulation
resumes from a correct and consistent state. In general,
speculative simulation may incur excessive rollbacks due to
over-optimistic execution. Whenever a rollback happens,
both simulation time and simulation work are wasted. Even-
tually, excessive rollbacks may cause substantial simulation
performance degradation, offsetting the gains of slack simu-

lation to a point that it is worse than cycle-by-cycle simula-
tions. Speculative slack simulation is only useful if it can
execute faster than cycle-by-cycle simulation, i.e., when
violations are rare. Violations can be made rare and control-
lable when speculative slack simulation is deployed in con-
junction with adaptive slack simulation. This is the
approach we have taken in this paper, although speculation
can be applied to any slack simulation scheme. There are
four critical components to make speculative slack simula-
tion work: 1) checkpointing, 2) violation detection, 3) roll-
back, and 4) forward progress. Checkpointing affects the
overall simulation time the most. Hence, we have imple-
mented it in detail to assess the checkpointing overhead. We
have yet to fully integrate the rollback mechanism triggered
on a violation detection. Although we have not fully imple-
mented speculative slack simulation in SlackSim, we have
developed a simple analytical model to assess its perfor-
mance. This model helps understand the overheads of spec-
ulative slack simulations.

5.1  Checkpointing 

In order to make a global checkpoint of the simulation, all
threads must synchronize, establish a consistent checkpoint,
and then proceed [13]. We first overview the thread check-
pointing mechanism we have implemented in each simula-
tor thread. 

The basic idea of memory-based checkpoints is built on the
fork() system call [17]. Fork() is used to create processes in
Unix or Unix-like operating systems, including Linux. Each
simulator thread executes the fork() system call to create a
checkpoint. The parent process suspends itself by executing
waitpid() immediately. The child process proceeds. In the
context of speculative slack simulations, the entire context
of the parent process serves as a checkpoint of the simula-
tion state. When a rollback becomes necessary, the child
process simply exits and the parent process preserving the
checkpoint of the simulation is awakened from its waitpid()
call. On a violation, rollback is initiated by the child pro-
cess. By using the fork() and waitpid() functions, we rely on
the operating system to implicitly handle all the details of
checkpoint and rollback. After the child process calls _exit()

 

(a) Barnes (b) FFT LU
Figure 6. Correlation between simulation violation rate and relative error in execution time.
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to terminate itself, its parent process is awakened to resume
from the point where the checkpoint was made. As the sim-
ulation moves forward, new checkpoints must be made to
preserve recently finished work in case of a future rollback.
At the same time, old checkpoints become useless and
should be discarded in order to release system resources.
The removal of an old checkpoint begins in the child pro-
cess. When kill() is called from the child, a signal is sent to
the suspended parent process that preserves the checkpoint.
The parent process terminates itself and releases all
resources associated with the checkpoint. 

The above algorithm describes the checkpoint and rollback
of a single thread. To take a global checkpoint in SlackSim,
the simulation manager thread must force all core threads to
stop at the same local time and inform all core threads to
take their own checkpoint. At the same time, the simulation
manager thread also makes a checkpoint of itself. This set of
checkpoints composes the global checkpoint. Whenever a
selected violation is detected by the simulation manager
thread, the thread instructs all core threads to rollback to
their previous checkpoint and rolls itself back as well. When
a core thread detects a violation, it communicates with the
manager thread through shared variables. The entire simula-
tion is rolled back to the previous global checkpoint. To
ensure forward progress, the simulation is replayed in cycle-
by-cycle mode until it safely reaches the next checkpoint.
The rollback mechanism followed by CC simulation is the
only component that is not yet integrated into SlackSim. 

5.2  Performance of Speculative SlackSim

During speculative simulation, four types of overhead are
incurred. The first one is the overhead of taking periodic
checkpoints. Second, after every rollback, the simulation
must return to a previously saved checkpoint, and then start
over. The simulation work between the point where the roll-
back is called and the checkpoint is wasted. Third, after a
rollback, we must run simulation in cycle-by-cycle mode
until the next checkpoint in order to avoid simulation live-
locks. The fourth overhead is the overhead of rolling the
simulation back to a previous checkpoint. This overhead is
omitted in this discussion because it is a secondary factor,
and it is hard to estimate without fully implementing it in
SlackSim. Thus, our model slightly underestimates the
speculative slack simulation time. Our simple analytical
model for the time taken by speculative slack simulation is
given by the following formula. 

where Ts denotes the simulation time of speculative slack
simulation, Tcc and Tcpt denote the simulation times of
cycle-by-cycle simulation and of slack simulation with

checkpointing respectively, F denotes the fraction of check-
point intervals that have at least one violation, Dr denotes
the average rollback distance in simulated cycles and I
denotes the length of each checkpoint interval in simulated
cycles. The first term in the formula corresponds to the time
spent in normal simulation with checkpoint, where no viola-
tion happens. The second term is the wasted simulation time
due to rollback. The last term is the time spent in cycle-by-
cycle mode after a rollback.

In order to reduce the frequency of checkpoints, violations
must be few and far between. Adaptive slack simulation is
an effective way to reduce the number of simulation viola-
tions to any level and in a predictable way. Hence, an obvi-
ous strategy is to combine adaptive and speculative slack
simulations. In the following, we have adopted a base adap-
tive slack simulation scheme with a target violation rate of
0.01% (one violation in 10,000 cycles) as the baseline to
evaluate the impact of speculation. In order to estimate the
overhead of taking periodic checkpoints in SlackSim, we
force every core thread to take a checkpoint periodically.
The number of cycles between two checkpoints is called the
checkpoint interval. 

Table 2 compares the simulation times of cycle-by-cycle
simulation (CC) and adaptive slack simulation (Adapt) with
a target violation rate of 0.01% and a violation band of 5%,
with the simulation times of Adaptive in which checkpoints
are taken periodically every 5k, 10k, 50k, and 100k simu-
lated cycles. Note that we have implemented the check-
pointing mechanism in Linux and the overhead of
checkpointing includes the time taken by the fork and join,
plus all the effects of making a copy of the virtual space
such as page faults, copy on write, etc, as the child thread
executes. The different simulation times are due to different
types of overheads. In cycle-by-cycle simulation, the simu-
lation overhead is essentially due to barrier synchronization
after each target core cycle. Unbounded slack (third col-
umn) runs much faster than cycle-by-cycle by a factor 3 to 4
(but with errors). In Adaptive, the synchronization is
relaxed because core threads may have different local times,
but collecting information about violations is time consum-
ing. In the adaptive simulations with checkpoints, the over-
head of maintaining checkpoints at regular intervals, from
5K to 100K cycles, is added to the overhead of controlling

Ts 1 F– Tcpt

FDrT
cpt

I
---------------------- FTcc+ +=

Table 2. Simulation times of schemes.

CC SU Adapt 5K 10K 50K 100K

Barnes 517 108 485 1063 795 542 513

FFT 484 105 320 811 625 391 348

LU 343 105 236 856 594 318 315

W-Nsq 390 94 277 673 512 315 294

Radix 690 89 398 1027 792 482 452



the simulation violation rate in the baseline adaptive slack
scheme.

Results in Table 2 show a mixed picture for speculative
slack simulation. All the simulations with either 5k or 10k
checkpoint intervals run slower than cycle-by-cycle simula-
tions, just because of the overhead of checkpointing. Long
simulation times are the effect of frequent checkpointing.
As the checkpoint interval grows to 50k, the simulation time
drops dramatically. This happens in all benchmarks. The
simulation times change very little for 100k checkpoints. 

During the execution of a benchmark program, violations
may not happen in some checkpoint intervals. We need to
estimate the fraction of checkpoint intervals that violate. In
Table 3, the columns under “F” display the fraction of
checkpoint intervals that have at least one violation for vari-
ous checkpointed intervals. In other words, rollback is nec-
essary in these situations. We observe that violations do not
happen evenly across benchmarks. For example, with 10k
checkpointing intervals, violations happen in 83 percent of
checkpoint intervals for Barnes while only 13 percent of
checkpoint intervals contain at least one violation in LU. As
the interval becomes larger, the fraction of intervals that
violate also increases. For instance, with 100k interval,
there is always at least one violation in every interval for
Water-Nsquared.

To complete the model for the performance of speculative
slack simulation on SlackSim, we need to estimate the roll-
back distance when a violation is detected. In Table 3 the
columns under Dr show the average distance (in simulated

cycles) between the beginning of a checkpointing interval
that violates and the first violation. This distance gives an
estimate of the wasted simulation time because of a rollback
triggered by a simulation violation. The data in the table
suggest that 12% to 32% of simulation is wasted in FFT,
LU, Radix and Water-Nsquared due to violations when
intervals are set to 50k or 100k. This wasted simulation time
will further reduce the speed of speculative slack simula-
tion.

By plugging values from Tables 2 and 3 into our analytical
model above, we are able to calculate good estimates of the
simulation times of a fully functional speculative slack sim-
ulation. Table 4 gives these estimates for speculative slack

simulations with 50k and 100k checkpoints. To be accept-
able, speculative slack simulation must run at least faster
than cycle-by-cycle simulation (CC). These results show
that the estimated execution time of speculative simulation
is always longer than cycle-by-cycle simulation. However,
more benchmarks should be run. Also, simulation experi-
ments with violation rates lower than 0.01% in the base
adaptive slack scheme might yield better performance. Nev-
ertheless, based on the data we have gathered and given its
complexity, speculative slack simulation does not look
promising unless violation rates can be brought down sig-
nificantly. 

One way to lower the rollback rate is to focus on violations
that have the most impact on simulation accuracy. For
example, it may be futile to eliminate core and bus viola-
tions because their impact on simulation errors may be very
small. If one would focus on cache map violations alone,
which are very rare and have the potential to cause more
simulation errors especially on some metrics such as coher-
ence overhead or miss rates, then the overhead of rollbacks
may be greatly diminished and checkpoint intervals may be
much longer thus reducing checkpointing overhead further.
In our results we have tracked all violations, including core
cache map and bus violations. Evaluating the speculative
schemes for less ordered interconnects (like mesh intercon-
nect) and multiprogrammed workloads is interesting as the
violation count in these scenarios should be less. Finally, the
overhead of checkpointing itself can be reduced by reducing
the involvement of the operating system in managing check-
points. For instance, if we can create a customized check-
point that saves the minimal amount of simulation and
simulated system state it is possible to reduce checkpointing
overhead. 

6  Related Work
Parallel simulation has been an active research topic for sev-
eral decades. Long before its application to computer archi-
tecture simulation, parallelization was a popular way to
accelerate Discrete Event Simulation (DES). Parallel Dis-
crete Event Simulation (PDES) employs two categories of
methods: conservative and optimistic [5][11]. The best
known framework for optimistic simulation is Jefferson’s
Time Warp [14]. Unfortunately, the application of the Time
Warp algorithm was not very successful due to several prac-

Table 3. Checkpoint violation rate and Rollback distance

F Dr

10K 50K 100K 10K 50K 100K

Barnes 83% 93% 94% 4.6k 6.0k 8.0k

FFT 37% 61% 88% 4.0k 16k 27k

LU 13% 30% 31% 4.3k 16k 25k

Water-Nsq 55% 97% 100% 4.9k 12k 12k

Radix 25% 65% 76% 4.5k 15k 16k

Table 4. Estimated overall simulation time

CC 50K 100K

Barnes 517 578 555

FFT 484 528 550

LU 343 363 355

Water-Nsq 390 463 422

Radix 690 698 693



tical issues, such as large memory usage, excessive roll-
backs, and wasted lookahead simulation. The target of Time
Warp was the simulation of queueing networks. We believe
that our work on speculative slack simulation is the first
attempt to apply the optimistic approach of Time Warp to
CMP simulations.

The Wisconsin Wind Tunnel II is a direct-execution (i.e.,
the simulated code is executed directly on the host
machine), discrete-event simulator that can be executed on
shared-memory multiprocessors or networks of worksta-
tions [18]. WWT II uses a conservative approach with bar-
rier synchronizations, an approach referred to as quantum
simulation. The simulation accuracy is guaranteed if the
quantum size is no greater than the target system’s critical
latency. If the quantum is larger than the critical latency,
then accuracy is compromised. Due to short latencies in
CMPs the quantum size must be kept short. When conflicts
in the interconnect are simulated the critical latency drops to
1 clock [3]. 

Slack simulations are different from quantum simulations.
In quantum simulation a barrier synchronization is executed
periodically to re-synchronize the simulation threads. In
slack simulations [8][9], the synchronization is more
relaxed as simulation threads must just remain within an a
time window. In effect, with slack simulation the barrier
advances every time the slowest simulated core advances by
one cycle. Simulation errors may results and this paper
explores two schemes to control errors in slack simulations.

Parallel simulation has been applied to CMP simulation in
[5]. In this work, the architecture of the CMP simulator is
similar to the one we have adopted in SlackSim, but it was
conceived to run on a distributed system, not on a CMP.
Instead of shared-memory, inter-thread communication is
implemented by message-passing. Two conservative slack
schemes are compared: barrier and lookahead. The paper
concludes that barrier is far superior to lookahead in terms
of simulation performance. Slack simulations take advan-
tage of fast R/W accesses to shared variables, instead of
exchanging messages through MPI. 

An adaptive quantum simulation scheme is proposed in [10]
in a message-passing parallel server environment. The size
of the quantum is adaptively adjusted according to the
amount of network traffic in the target system. The quantum
is increased when packets are not exchanged, and it is short-
ened as the packet traffic increases. It is surmised that the
error rate increases when message traffic increases because
message exchanges are not modeled accurately as the quan-
tum size is larger than the critical latency. With this simple
mechanism, the simulation speedup is improved with less
than a 5% error. In our adaptive scheme we have proposed
ways to measure dynamically the rate of simulation viola-
tions, which is a more direct measure of errors. 

A recent CMP simulator called Graphite [16] targets multi-
core systems with 1000’s of cores running on large scale
distributed systems with a mix of simulations and analytical
models. Three different simulation schemes called Lax,
Lax-Barrier and Lax-P2P are contemplated. All these
schemes allow some slack between the simulations of cores.
Lax uses the same approach as unbounded slack and the
authors confirm our experience that simulation errors are
few and tolerable. Lax-Barrier is similar to quantum simu-
lations. In Lax-P2P, each core periodically chooses another
core at random and synchronizes its simulation with it; this
is an interesting approach, which we plan to explore further
on SlackSim.

7  Conclusions and Future work
Slack simulation offers new trade-offs between simulation
speed and accuracy. It accelerates the parallel simulation of
CMPs by relaxing the tight synchronization enforced
between simulation threads in cycle-by-cycle (cycle accu-
rate) simulation but it suffers from simulation errors due to
simulation violations. A method to detect and track viola-
tions is given and the measured simulation violation rate is
used to control and ameliorate the error rate. We have intro-
duced an adaptive slack simulation scheme that adjusts the
simulation violation rate to keep simulation violations under
a given threshold. Our experiments have shown that adap-
tive slack simulation is effective at controlling the rate of
simulation violations. 

We have proposed an optimistic simulation scheme called
speculative slack simulation. We have described in details
an implementation involving periodic simulation check-
pointing, and rollback whenever violations are detected. We
have proposed a simple analytical model, which in conjunc-
tion with simple simulation measurement can evaluate the
efficiency of speculative slack simulation. 

The model suggests that speculative simulation may be
worth considering provided the violation rate of the base
slack simulation scheme can be kept to a minimum while
keeping simulation efficiency high. More importantly effi-
cient checkpointing is key. At the end the performance of
checkpoint/rollback is a compromise between the overhead
of avoiding violations in the base scheme and the overhead
of recovering from a violation. Another avenue for
improvement is to minimize the checkpointing overhead. In
this research we have used a simple general-purpose mem-
ory-based checkpointing method. The whole simulator is
checkpointed. A tailor-made checkpointing scheme which
does not involve the operating system as much and which
does not save the entire virtual space of the simulation
would certainly improve performance. 

The experiments we have run so far are of modest scale
(simulation of eight cores on an 8-core CMP host). Larger-



scale simulations must be run to reach a definitive conclu-
sion about the viability of speculative slack simulations.
The problem is that most current commercial CMPs still
support a small number of thread contexts. In the future we
plan to run SlackSim on larger scale systems and to expand
the pool of our benchmark programs. Finally we plan to
fully deploy the speculative slack simulation scheme on top
of SlackSim. Future work also includes exploring slack sim-
ulations for heterogeneous multicores (as a target CMP) and
integrating SlackSim with power [2], thermal [19] and reli-
ability [20] models. 
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